福田の一夜漬け数学〜図形と方程式〜領域(3)領域における最大最小を本当に理解する、高校2年生 - 質問解決D.B.(データベース)

福田の一夜漬け数学〜図形と方程式〜領域(3)領域における最大最小を本当に理解する、高校2年生

問題文全文(内容文):
${\Large\boxed{1}}$ 4つの不等式$x \geqq 0,y \geqq 0,2x+y \leqq 5,$$x+2y \leqq 4$を満たす$x,y$に対して
(1)$x+y$ の最大値、最小値とそのときの$x,y$を求めよ。
(2)$x+3y$ の最大値、最小値とそのときの$x,y$を求めよ。
(3)$x-y$ の最大値、最小値とそのときの$x,y$を求めよ。
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 4つの不等式$x \geqq 0,y \geqq 0,2x+y \leqq 5,$$x+2y \leqq 4$を満たす$x,y$に対して
(1)$x+y$ の最大値、最小値とそのときの$x,y$を求めよ。
(2)$x+3y$ の最大値、最小値とそのときの$x,y$を求めよ。
(3)$x-y$ の最大値、最小値とそのときの$x,y$を求めよ。
投稿日:2018.08.30

<関連動画>

【高校数学】数Ⅲ-11 複素数の積の図表示③

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数平面#複素数#複素数平面#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$z_1=\sqrt3+i,z_2=2+2i$のとき,積$z_1z_2$を図示せよ.

②$\dfrac{1+\sqrt3i}{1+i}$を複素数平面上に図示しよう.
この動画を見る 

【数Ⅱ】図形と方程式:円と直線! aを実数とする。円x²+y²-4x-8y+15=0と直線y=ax+1が 異なる2点A,Bで交わっている。 (1)aの範囲を求めなさい。

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#大分大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
aを実数とする。円$x^2+y^2-4x-8y+15=0$と直線y=ax+1が 異なる2点A,Bで交わっている。 (1)aの範囲を求めなさい。
この動画を見る 

でんがんさん初登場 大阪大 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
国立大学法人大阪大学

自然数$m,n$が
$\sqrt{n}\leqq\frac{m}{2}<\sqrt{n+1}$を満たす次を証明せよ
$(1)m^2-4n=0または1$
$(2)m<\sqrt{n}+$$\sqrt{n+1}<$$m+1$
この動画を見る 

福田の数学〜上智大学2024TEAP利用型文系第3問(4)〜線分の通過範囲の面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#微分法と積分法#軌跡と領域#学校別大学入試過去問解説(数学)#不定積分・定積分#面積、体積#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{2}(4)$座標平面上で放物線$y=x^2$上の点P$(t,t^2)(0 \leqq t \leqq 1)$における接線$y=-(x+1)^2$の二つの共有点の中点をQとする。ただし、共有点が1つの場合は、その共有点をQとする。Qの座標は$(\boxed{ユ}t+\boxed{ヨ}
,\boxed{ラ}t^2+\boxed{リ}t+\boxed{ル})$である。
tが$0 \leqq t \leqq1$の範囲を動くとき線分PQが動いてできる図形の面積は$\frac{\boxed{レ}}{\boxed{ロ}}$である
この動画を見る 

これ解けましたか?

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
$5^x=7^y=1225$
$\displaystyle \frac{xy}{x+y}$の値を求めよ
この動画を見る 
PAGE TOP