福田の数学〜空間図形の通過範囲の面積と体積〜杏林大学2023年医学部第3問後編〜空間図形の通過範囲の面積と体積 - 質問解決D.B.(データベース)

福田の数学〜空間図形の通過範囲の面積と体積〜杏林大学2023年医学部第3問後編〜空間図形の通過範囲の面積と体積

問題文全文(内容文):
$xy$平面上の単位円$C$の$x\geqq 0$に動点$P$が$A$から$B$へ移動するとき、
$P,Q$を通り頂点$T$の放物線$L$と線分$PQ$で囲まれた図形の
通過範囲の体積を求めよ。
ただし$TM=PQ$とする。
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$xy$平面上の単位円$C$の$x\geqq 0$に動点$P$が$A$から$B$へ移動するとき、
$P,Q$を通り頂点$T$の放物線$L$と線分$PQ$で囲まれた図形の
通過範囲の体積を求めよ。
ただし$TM=PQ$とする。
投稿日:2023.12.28

<関連動画>

福田の数学〜北里大学2022年医学部第2問〜定積分と不等式

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
次の各問いに答えよ。
(1)定積分\int^1_0\frac{1}{1+x^2}dxを求めよ。
(2)$x≠0$を満たすすべての実数xに対して、$e^x \gt 1+x$と$e^{-x^2} \lt \frac{1}{1+x^2}$が
成り立つことを証明せよ。
(3)$\frac{2}{3} \lt \int^1_0e^{-x^2}dx \lt \frac{\pi}{4}$が成り立つことを証明せよ。

2022北里大学医学部過去問
この動画を見る 

大学入試問題#438「積分区間が[0,π/6]なんですけど・・」 藤田医科大学(2023) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#藤田医科大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{6}} \displaystyle \frac{\sin^33x}{\sin^33x+\cos^33x} dx$

出典:2023年藤田医科大学 入試問題
この動画を見る 

#33 数検1級1次 過去問 区分求積法

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty }\displaystyle \sum_{k=1}^n\displaystyle \frac{1}{\sqrt{ 2nk-k^2 }}$の極限値を求めよ。
この動画を見る 

大学入試問題#80 信州大学(2001) 不定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{x}{\sqrt{ x+1 }+1}\ dx$を計算せよ。

出典:2001年信州大学 入試問題
この動画を見る 

ヨビノリのマンデー積分をぶっ飛ばせ!ヨビノリ編集担当やすさん乱入

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)$を遇関数とする $a \gt 0$

(1)
$\displaystyle \int_{-a}^{ a }\displaystyle \frac{f(x)}{e^x+1}dx=\displaystyle \int_{0}^{ a }f(x)dx$を示せ


(2)
$\displaystyle \int_{-a}^{ a }\displaystyle \frac{x^2 \cos x+e^x}{e^x+1}dx$を求めよ

出典:信州大学医学部 過去問
この動画を見る 
PAGE TOP