福田のわかった数学〜高校2年生第7回〜2変数関数の最大最小 - 質問解決D.B.(データベース)

福田のわかった数学〜高校2年生第7回〜2変数関数の最大最小

問題文全文(内容文):
数学$\textrm{II}$ 2変数関数の最大最小
$x,y$が$0 \leqq x \leqq 1,0 \leqq y \leqq 1$を
満たして変化するときの2変数関数
$f(x,y)=5xy-2(x+y)+1$
の最大値$M,$最小値$m$を求めよ。
単元: #数Ⅱ#式と証明#微分法と積分法#恒等式・等式・不等式の証明#平均変化率・極限・導関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 2変数関数の最大最小
$x,y$が$0 \leqq x \leqq 1,0 \leqq y \leqq 1$を
満たして変化するときの2変数関数
$f(x,y)=5xy-2(x+y)+1$
の最大値$M,$最小値$m$を求めよ。
投稿日:2021.04.20

<関連動画>

福田のおもしろ数学541〜条件付き不等式の証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$x,y,z$は

$x+y+z \geqq xyz$

を満たす非負実数とするとき

$x^2+y^2+z^2 \geqq xyz$

を証明して下さい。
    
この動画を見る 

福田の数学〜京都大学2022年理系第5問〜方程式の解と不等式の証明

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#複素数と方程式#恒等式・等式・不等式の証明#解と判別式・解と係数の関係#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
曲線$C:y=\cos^3x$ $(0 \leqq x \leqq \frac{\pi}{2})$,x軸およびy軸で囲まれる図形の面s系をS
とする。$0 \lt t \lt \frac{\pi}{2}$とし、C上の点Q$(t,\cos^3t)$と原点O,およびP$(t,o),R(0,\cos^3t)$
を頂点にもつ長方形OPQRの面積をf(t)とする。このとき、次の問いに答えよ。
(1)Sを求めよ。
(2)$f(t)$は最大値をただ一つのtでとることを示せ。そのときのtを$\alpha$とすると、
$f(\alpha)=\frac{\cos^4\alpha}{3\sin\alpha}$ であることを示せ。
(3)$\frac{f(\alpha)}{S} \lt \frac{9}{16}$ を示せ。

2022京都大学理系過去問
この動画を見る 

福田のおもしろ数学446〜分数式の値が整数となるnをすべて求める

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\dfrac{n}{1!}+\dfrac{n^2}{2!}+\dfrac{n^3}{3!}+\cdots +\dfrac{n^{n-1}}{(n-1)!}+\dfrac{n^n}{n!}$

が整数になるような

正の整数$n$をすべて求めて下さい。
    
この動画を見る 

福田のおもしろ数学513〜3つの数のうち少なくとも2つは等しいことの証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$x,y,z$は正の実数であり、

任意の自然数$n$について$x^n,y^n,z^n$が

三角形の$3$辺をなすとき、

$x,y,z$の少なくとも$2$つは等しくことを

証明して下さい。
   
この動画を見る 

ε-δ論法 #3 f(x)=e^x が連続

アイキャッチ画像
単元: #数Ⅱ#式と証明#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$f(x)=e^x $が連続であることを
$ε-δ$論法で示せ.
この動画を見る 
PAGE TOP