【わかりやすく解説】相加相乗平均の関係を使う不等式の証明①(高校数学Ⅱ) - 質問解決D.B.(データベース)

【わかりやすく解説】相加相乗平均の関係を使う不等式の証明①(高校数学Ⅱ)

問題文全文(内容文):
$a \gt 0,b \gt 0$のとき、不等式$ab+\displaystyle \frac{4}{ab} \geqq 4$が成り立つことを証明せよ
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$a \gt 0,b \gt 0$のとき、不等式$ab+\displaystyle \frac{4}{ab} \geqq 4$が成り立つことを証明せよ
投稿日:2022.04.15

<関連動画>

数検準1級1次過去問(1番 相加平均・相乗平均)

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#式と証明#恒等式・等式・不等式の証明#数学検定#数学検定準1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
1⃣ a≠0
$\frac{2a^4-4a^2+8}{a^2}$の最小値を求めよ
この動画を見る 

【数Ⅱ】【式と証明】不等式の証明8 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#式と証明#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1)a>0のとき、a+16/a の最小値を求めよ。
(2)a>0のとき、(a+1/a)(a+16/a) の最小値を求めよ。
(3)a>0 ,b>0 ,ab=12のとき、a+b の最小値を
求めよ。
(4)a>0 ,b>0 ,$2a+3b=4\sqrt{2}$ のとき、abの最大値を求めよ。
この動画を見る 

京都大 三角関数 4次方程式 高校数学 大学受験 Japanese university entrance exam questions Kyoto University

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#複素数と方程式#三角関数#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2014京都大学過去問題
$0 \leqq θ < 90^\circ \quad$xについての4次方程式
$\{ x^2-2(cosθ)x-cosθ+1 \} x$
$\{ x^2-2(tanθ)x+3 \} = 0$は虚数解を少なくとも1つ持つことを示せ。
この動画を見る 

【数Ⅱ】【式と証明】不等式の証明1 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#式と証明#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の不等式を証明せよ。
(1)$(x^4+y^4)(x^2+y^2 )≧(x^3+y^3 )^2$
(2)$x^4+y^4≧x^3 y+xy^3$
この動画を見る 

福田の数学〜京都大学2022年理系第4問〜四面体に関する証明と線分の長さの最小

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#微分法と積分法#恒等式・等式・不等式の証明#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
四面体OABCが
$OA=4, OB=AB=BC=3, OC=AC=2\sqrt3$
を満たしているとする。Pを辺BC上の点とし、$\triangle OAP$の重心をGとする。
このとき、次の各問いに答えよ。
(1)$\overrightarrow{ PG } ∟ \overrightarrow{ OA }$を示せ。
(2)Pが辺BC上を動くとき、PGの最小値を求めよ。

2022京都大学理系過去問
この動画を見る 
PAGE TOP