【数Ⅱ】【三角関数】加法定理の応用2 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅱ】【三角関数】加法定理の応用2 ※問題文は概要欄

問題文全文(内容文):
tanα=t のときcos² α ,sin2α ,cos2α を t で表せ。
チャプター:

0:00 オープニング
0:06 問題文
0:15 解説

単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#三角関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
tanα=t のときcos² α ,sin2α ,cos2α を t で表せ。
投稿日:2025.03.13

<関連動画>

九州大学 三倍角 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
九州大学過去問題
(1)$\sin10^{\circ}$は3次方程式$8x^3-6x+1=0$の解であることを示せ。
(2)他の2解を求めよ。
この動画を見る 

福田の数学〜明治大学2022年理工学部第2問〜平面図形の計量

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#大学入試過去問(数学)#図形の性質#図形と計量#三角比への応用(正弦・余弦・面積)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#英語(高校生)#平面図形#大学入試過去問(英語)#学校別大学入試過去問解説(英語)#明治大学#数学(高校生)#明治大学
指導講師: 福田次郎
問題文全文(内容文):
平面上の長さ3の線分AB上に、$AP=t\ (0 \lt t \lt 3)$を満たす点Pをとる。
中心を$O$とする半径1の円Oが、線分ABと点Pで接しているとする。
$\alpha=\angle OAB,\ \beta=\angle OBA$
とおく。$\tan\alpha,\ \tan\beta,\tan(\alpha+\beta)$を$t$で表すと、
$\tan\alpha=\boxed{あ},\ \tan\beta=\boxed{い},$
$\ \tan(\alpha+\beta)=\boxed{う}$である。
$0 \lt \alpha+\beta \lt \frac{\pi}{2}$であるようなtの範囲は$\boxed{え}$である。
tは$\boxed{え}$の範囲にあるとする。点$A,\ B$から円Oに引いた接線の接点のうち、
Pでないものをそれぞれ$Q,\ R$とすると、$\angle QAB+\angle RBA \lt \pi$である。
したがって、線分AQのQの方への延長と線分BRのRの方への延長は交わり、
その交点をCとすると、円Oは三角形ABCの内接円である。
このとき、線分CQの長さをtで表すと$\ \boxed{お}$である。
また、$t$が$\boxed{え}$の範囲を動くとき、三角形ABCの面積Sの取り得る値の範囲は$\boxed{か}$である。

2022明治大学理工学部過去問
この動画を見る 

【高校数学】 数Ⅱ-99 三角関数を含む方程式・不等式①

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎$0 \leqq \theta \leqq 2π$のとき、次の方程式を解こう。また、$\theta$の範囲に制限がないときの解を求めよう。

①$\sin \theta=+\displaystyle \frac{\sqrt{ 3 }}{2}$

②$2\cos\theta+1=0$

③$\sqrt{ 3 } \tan \theta=1$
この動画を見る 

【数Ⅱ】高2生必見!! 2020年度 第2回 K塾高2模試 大問6_三角関数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\theta$の関数。 $f(\theta)=\dfrac{1}{2\sin2\theta}-\sqrt2k\cos(θ-\dfrac{\pi}{4})+k^2$ がある。ただし、kは正の定数である。
(1)$\sin2\theta,\cos(\theta-\dfrac{\pi}{4})$のそれぞれをsinθ、cosθを用いて表せ。
(2)(i)$f(\theta)$を$(\sin\theta-p)(\cos\theta-q)$ (p,qは定数)の形で表せ。 $(ii)k=\dfrac{\sqrt3}{2}$のとき、方程式$f(\theta)=0$を$0\leqq \theta\lt 2\pi$において解け。
(3)$\theta$の方程式$f(\theta)=0$が$0\leqq\theta\lt 2\pi$において相異なる4個の解をもつようなkの値の範 囲を求めよ。
(4)(3)のとき、$\theta$の方程式$f(\theta)=0$の$0\leqq\theta\lt 2\pi$における最小の解を$\alpha$、最大の解を$\beta$と する。$\alpha+\beta=\dfrac{5\pi}{3}$となるようなkの値を求めよ。
この動画を見る 

【高校数学】2018年度センター試験・数学ⅡB・過去問解説~大問1の1三角関数~【数学ⅡB】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#センター試験・共通テスト関連#センター試験#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1) 1ラジアンとは、㋐のことである。
  ㋐に当てはまるものを、次の⓪~③のうちから一つ選べ。

  ⓪半径が1、面積が1の扇形の中心角の大きさ
  ①半径がx、面積が1の扇形の中心角の大きさ
  ②半径が1、張の長さが1の扇形の中心角の大きさ
  ③半径がx、弧の長さが1の扇形の中心角の大きさ


(2) 144°を弧度で表すと$\displaystyle \frac{㋑}{㋒}$xラジアンである。
  また、$\displaystyle \frac{23}{12}$xラジアンを度で表すと[エオカ]である。


(3) $\displaystyle \frac{x}{2}$≦θ≦xの範囲で2sin(θ+$\displaystyle \frac{π}{5}$)-2cos(θ+$\displaystyle \frac{π}{30}$=1を満たすθの値を求めよう。
  x=θ+$\displaystyle \frac{π}{5}$とおくと、①は2sin x-2cos(x-$\displaystyle \frac{π}{㋖}$=1と表せる。
  加法定理を用いると、この式はsin x-$\sqrt{ ㋗ }$cos x=1となる。

  さらに、三角関数の合成を用いるとsin(x-$\displaystyle \frac{π}{㋘}$)=$\displaystyle \frac{1}{㋙}$と変形できる。
  x=θ+$\displaystyle \frac{π}{5}$、$\displaystyle \frac{π}{2}$≦θ≦πだから、θ=$\displaystyle \frac{㋚㋛}{㋜㋝}$πである。
この動画を見る 
PAGE TOP