福田の一夜漬け数学〜数列・群数列(2)〜高校2年生 - 質問解決D.B.(データベース)

福田の一夜漬け数学〜数列・群数列(2)〜高校2年生

問題文全文(内容文):
数列 $1 2 1 3 2 $$1 4 $$3 $$2 $$1 $$5\cdots$について次を求めよ。
(1)第100項
(2)初項から第100項までの和


数列 $ \dfrac{2}{3} \dfrac{2}{5} \dfrac{4}{5} \dfrac{2}{7} \dfrac{4}{7} \dfrac{6}{7} \dfrac{2}{9}$$ \dfrac{4}{9}$$ \dfrac{6}{9}$$ \dfrac{8}{9}$$ \dfrac{2}{11}\cdots$について

次の問いに答えよ。
(1)$\displaystyle \frac{4}{15}$は第何項か。
(2)第100項は何か。
単元: #数列#数列とその和(等差・等比・階差・Σ)#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
数列 $1 2 1 3 2 $$1 4 $$3 $$2 $$1 $$5\cdots$について次を求めよ。
(1)第100項
(2)初項から第100項までの和


数列 $ \dfrac{2}{3} \dfrac{2}{5} \dfrac{4}{5} \dfrac{2}{7} \dfrac{4}{7} \dfrac{6}{7} \dfrac{2}{9}$$ \dfrac{4}{9}$$ \dfrac{6}{9}$$ \dfrac{8}{9}$$ \dfrac{2}{11}\cdots$について

次の問いに答えよ。
(1)$\displaystyle \frac{4}{15}$は第何項か。
(2)第100項は何か。
投稿日:2018.05.02

<関連動画>

福田のおもしろ数学290〜3項間漸化式の第2024項を求める

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$x_1=1,x_2=2,x_{n+2}$ は $(x_{n+1}+1)(x_n+1)$ の一の位と定義する。 $x_{2024}$ を求めよ。
この動画を見る 

【高校数学】 数B-92 漸化式⑥

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の条件で定められる数列$\{a_n\}$の一般項を求めよう.

①$a_1=2,a_{n+1}=2a_n+2^{n+1}$

②$a_1=1,9a_{n+1}=a_n+\dfrac{4}{3^n}$
この動画を見る 

数学「大学入試良問集」【13−14 確率漸化式の基本】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数B
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
袋の中に$1~9$までの異なる数字を1つずつ書いた9枚のカードが入っている。
この中から1枚を取り出し、数字を調べて袋に戻す。
この試行を$n$回繰り返したとき、調べた$n$枚のカードの数字の和が偶数になる確率を$P_n$とする。
このとき、次の各問いに答えよ。
(1)$P_2,P_3$の値を求めよ。
(2)$P_{n+1}$を$P_n$を用いて表せ。
(3)$P_n$を$n$を用いて表せ。
この動画を見る 

ちょっと変わった漸化式 和歌山大

アイキャッチ画像
単元: #数列#漸化式#和歌山大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2022和歌山大学過去問題
$a_{1}=\frac{1}{2}$,$a_{n+1}=\frac{2}{1+a_{n}}$
$b_{1}=1$,$a_{n}b_{n+1}=b_{n}$
数列$b_{n}$の三項間漸化式をつくれ
$a_{n}$の一般項を求めよ
この動画を見る 

福田のおもしろ数学413〜2024個の分数からk個選んできて積を作って合計しよう

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

$\dfrac{1}{2},\dfrac{1}{3},\dfrac{1}{4},\dfrac{1}{5},\cdots \dfrac{1}{2025}$の$2024$個の数から

異なる$k$個を選んで作った積の総和を$s(k)$とする。

$s(2)+s(4)+s(6)+\cdots +s(2024)$

の値を求めて下さい。
   
この動画を見る 
PAGE TOP