問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}\ (4)3次関数f(x)は、x=1で極大値5をとり、x=2で極小値4をとる。\hspace{40pt}\\
関数f(x)(x \geqq 0)のグラフを、原点を中心に時計回りに\\
θ回転して得られる図形をC(θ)とする。\\
ただし、0 \lt θ \lt \piとする。C(θ)とx軸の共有点が相異なる3点であるとき、\\
それらをx座標の小さい順にP_θ,Q_θ,R_θとする。線分Q_θR_θとC(θ)で\\
囲まれた部分の面積が\frac{81}{32}であるとき、Q_θのx座標は\boxed{\ \ エ\ \ }である。
\end{eqnarray}
2022早稲田大学商学部過去問
\begin{eqnarray}
{\large\boxed{1}}\ (4)3次関数f(x)は、x=1で極大値5をとり、x=2で極小値4をとる。\hspace{40pt}\\
関数f(x)(x \geqq 0)のグラフを、原点を中心に時計回りに\\
θ回転して得られる図形をC(θ)とする。\\
ただし、0 \lt θ \lt \piとする。C(θ)とx軸の共有点が相異なる3点であるとき、\\
それらをx座標の小さい順にP_θ,Q_θ,R_θとする。線分Q_θR_θとC(θ)で\\
囲まれた部分の面積が\frac{81}{32}であるとき、Q_θのx座標は\boxed{\ \ エ\ \ }である。
\end{eqnarray}
2022早稲田大学商学部過去問
単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#指数関数#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#面積、体積#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}\ (4)3次関数f(x)は、x=1で極大値5をとり、x=2で極小値4をとる。\hspace{40pt}\\
関数f(x)(x \geqq 0)のグラフを、原点を中心に時計回りに\\
θ回転して得られる図形をC(θ)とする。\\
ただし、0 \lt θ \lt \piとする。C(θ)とx軸の共有点が相異なる3点であるとき、\\
それらをx座標の小さい順にP_θ,Q_θ,R_θとする。線分Q_θR_θとC(θ)で\\
囲まれた部分の面積が\frac{81}{32}であるとき、Q_θのx座標は\boxed{\ \ エ\ \ }である。
\end{eqnarray}
2022早稲田大学商学部過去問
\begin{eqnarray}
{\large\boxed{1}}\ (4)3次関数f(x)は、x=1で極大値5をとり、x=2で極小値4をとる。\hspace{40pt}\\
関数f(x)(x \geqq 0)のグラフを、原点を中心に時計回りに\\
θ回転して得られる図形をC(θ)とする。\\
ただし、0 \lt θ \lt \piとする。C(θ)とx軸の共有点が相異なる3点であるとき、\\
それらをx座標の小さい順にP_θ,Q_θ,R_θとする。線分Q_θR_θとC(θ)で\\
囲まれた部分の面積が\frac{81}{32}であるとき、Q_θのx座標は\boxed{\ \ エ\ \ }である。
\end{eqnarray}
2022早稲田大学商学部過去問
投稿日:2022.08.18