問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{3}}\ 実数k \gt 0 に対して、関数A(k)=\int_0^2|x^2-kx|dx\ とすると\\
A(k)=
\left\{\begin{array}{1}
\frac{\boxed{\ \ アイ\ \ }\ k^3+\ \boxed{\ \ ウエ\ \ }\ k^2+\ \boxed{\ \ オカ\ \ }\ k+\ \boxed{\ \ キク\ \ }}{\boxed{\ \ ケコ\ \ }}\hspace{25pt}(0 \lt k \lt \boxed{\ \ サシ\ \ })\\
\\
\frac{\boxed{\ \ スセ\ \ }\ k+\ \boxed{\ \ ソタ\ \ }}{\boxed{\ \ チツ\ \ }}\hspace{103pt}(\boxed{\ \ サシ\ \ } \leqq k)\\
\end{array}
\right.\\
\\となる。この関数A(k)が最小となるのはk=\sqrt{\boxed{\ \ テト\ \ }}\ のときで、そのときの\\
\\
A(k)の値は\frac{\boxed{\ \ ナニ\ \ }+\boxed{\ \ ヌネ\ \ }\sqrt{\boxed{\ \ ノハ\ \ }}}{\boxed{\ \ ヒフ\ \ }}
\end{eqnarray}
2022慶應義塾大学総合政策学部過去問
\begin{eqnarray}
{\large\boxed{3}}\ 実数k \gt 0 に対して、関数A(k)=\int_0^2|x^2-kx|dx\ とすると\\
A(k)=
\left\{\begin{array}{1}
\frac{\boxed{\ \ アイ\ \ }\ k^3+\ \boxed{\ \ ウエ\ \ }\ k^2+\ \boxed{\ \ オカ\ \ }\ k+\ \boxed{\ \ キク\ \ }}{\boxed{\ \ ケコ\ \ }}\hspace{25pt}(0 \lt k \lt \boxed{\ \ サシ\ \ })\\
\\
\frac{\boxed{\ \ スセ\ \ }\ k+\ \boxed{\ \ ソタ\ \ }}{\boxed{\ \ チツ\ \ }}\hspace{103pt}(\boxed{\ \ サシ\ \ } \leqq k)\\
\end{array}
\right.\\
\\となる。この関数A(k)が最小となるのはk=\sqrt{\boxed{\ \ テト\ \ }}\ のときで、そのときの\\
\\
A(k)の値は\frac{\boxed{\ \ ナニ\ \ }+\boxed{\ \ ヌネ\ \ }\sqrt{\boxed{\ \ ノハ\ \ }}}{\boxed{\ \ ヒフ\ \ }}
\end{eqnarray}
2022慶應義塾大学総合政策学部過去問
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{3}}\ 実数k \gt 0 に対して、関数A(k)=\int_0^2|x^2-kx|dx\ とすると\\
A(k)=
\left\{\begin{array}{1}
\frac{\boxed{\ \ アイ\ \ }\ k^3+\ \boxed{\ \ ウエ\ \ }\ k^2+\ \boxed{\ \ オカ\ \ }\ k+\ \boxed{\ \ キク\ \ }}{\boxed{\ \ ケコ\ \ }}\hspace{25pt}(0 \lt k \lt \boxed{\ \ サシ\ \ })\\
\\
\frac{\boxed{\ \ スセ\ \ }\ k+\ \boxed{\ \ ソタ\ \ }}{\boxed{\ \ チツ\ \ }}\hspace{103pt}(\boxed{\ \ サシ\ \ } \leqq k)\\
\end{array}
\right.\\
\\となる。この関数A(k)が最小となるのはk=\sqrt{\boxed{\ \ テト\ \ }}\ のときで、そのときの\\
\\
A(k)の値は\frac{\boxed{\ \ ナニ\ \ }+\boxed{\ \ ヌネ\ \ }\sqrt{\boxed{\ \ ノハ\ \ }}}{\boxed{\ \ ヒフ\ \ }}
\end{eqnarray}
2022慶應義塾大学総合政策学部過去問
\begin{eqnarray}
{\large\boxed{3}}\ 実数k \gt 0 に対して、関数A(k)=\int_0^2|x^2-kx|dx\ とすると\\
A(k)=
\left\{\begin{array}{1}
\frac{\boxed{\ \ アイ\ \ }\ k^3+\ \boxed{\ \ ウエ\ \ }\ k^2+\ \boxed{\ \ オカ\ \ }\ k+\ \boxed{\ \ キク\ \ }}{\boxed{\ \ ケコ\ \ }}\hspace{25pt}(0 \lt k \lt \boxed{\ \ サシ\ \ })\\
\\
\frac{\boxed{\ \ スセ\ \ }\ k+\ \boxed{\ \ ソタ\ \ }}{\boxed{\ \ チツ\ \ }}\hspace{103pt}(\boxed{\ \ サシ\ \ } \leqq k)\\
\end{array}
\right.\\
\\となる。この関数A(k)が最小となるのはk=\sqrt{\boxed{\ \ テト\ \ }}\ のときで、そのときの\\
\\
A(k)の値は\frac{\boxed{\ \ ナニ\ \ }+\boxed{\ \ ヌネ\ \ }\sqrt{\boxed{\ \ ノハ\ \ }}}{\boxed{\ \ ヒフ\ \ }}
\end{eqnarray}
2022慶應義塾大学総合政策学部過去問
投稿日:2022.07.04