整数問題 青山学院 - 質問解決D.B.(データベース)

整数問題 青山学院

問題文全文(内容文):
$x^2+5y^2 = 21$を満たす
整数x,yの組をすべて求めよ(x>y)

青山学院高等部
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$x^2+5y^2 = 21$を満たす
整数x,yの組をすべて求めよ(x>y)

青山学院高等部
投稿日:2022.05.12

<関連動画>

Q:鳩の巣原理の解説して下さい

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
鳩の巣原理 解説動画です
この動画を見る 

京都大学 整数問題 Mathematics Japanese university entrance exam Kyoto University

アイキャッチ画像
単元: #大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2018年 国立大学法人京都大学

$n^3-7n+9$が素数となる整数$n$を求めよ。
この動画を見る 

【数A】一次不定方程式を合同式(mod)で解くステップ【解法の解説】

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数A】一次不定方程式を合同式(mod)で解くステップ紹介動画です
-----------------
$42x+29y=2$の整数解をすべて求めよ
$37x+97y=7$の整数解をすべて求めよ
この動画を見る 

福田の数学〜上智大学2021年TEAP利用文系第4問(1)〜条件の否定

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}} (1)\ 関数f(x)に対する以下の条件(P)を考える。\\
(P): f(x) \gt 3を満たす5以上の自然数nが存在する。\\
条件(P)の否定として正しいものを以下の選択肢からすべて選べ。\\
(\textrm{a})f(n) \leqq 3を満たす5以上の自然数nが存在する。\\
(\textrm{b})f(n) \gt 3を満たす5未満の自然数nが存在する。\\
(\textrm{c})f(n) \leqq 3を満たす5未満の自然数nが存在する。\\
(\textrm{d})nが5以上の自然数ならばf(n) \leqq 3が成り立つ。\\
(\textrm{e})nが5未満の自然数ならばf(n) \leqq 3が成り立つ。\\
(\textrm{f})nが5未満の自然数ならばf(n) \gt 3が成り立つ。\\
(\textrm{g})f(n) \gt 3が5以上の全ての自然数nに対して成り立つ。\\
(\textrm{h})f(n) \leqq 3が5以上の全ての自然数nに対して成り立つ。\\
(\textrm{i})f(n) \leqq 3が5未満の全ての自然数nに対して成り立つ。
\end{eqnarray}

2021上智大学文系過去問
この動画を見る 

整数問題 履正社 (大阪)

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\sqrt{\frac{900}{n}}$と$\frac{n+2}{9}$がともに自然数となる自然数nのうち最も小さいものは?
履正社高等学校
この動画を見る 
PAGE TOP