息抜き整数問題 - 質問解決D.B.(データベース)

息抜き整数問題

問題文全文(内容文):
次の数はすべて整数であるとき,これを解け.

$\sqrt[3]{4913}$
$\sqrt[3]{79507}$
$\sqrt[3]{314432}$
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
次の数はすべて整数であるとき,これを解け.

$\sqrt[3]{4913}$
$\sqrt[3]{79507}$
$\sqrt[3]{314432}$
投稿日:2020.07.09

<関連動画>

整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$p,q$は異なる素数である.
$8^{q-1}-1=pq^2$の$(p,q)$を求めよ.
この動画を見る 

高校への数学執筆者 秋田洋和先生が解説!!(岡山県)

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
「3ケタの正の整数で、百の位を2倍した数と下2ケタの数との和が7の倍数ならば、もとの整数は7の倍数である」なぜ?
百の位をa,十の位をb、一の位をcとする。

岡山県
この動画を見る 

面白不等式

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
m,nは自然数である.
$\dfrac{57}{158}\lt \dfrac{m}{n}\lt \dfrac{25}{68}$
mの最小値を求めよ.
この動画を見る 

高校入試だけどもガウス記号 大阪星光学院

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
記号[x]はxを超えない最大の整数。
$[(\frac{x-1}{2})^2] = \frac{x}{2} + 3 $のときx=?

大阪星光学院高等学校
この動画を見る 

自作 整数問題2

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$3^n=k^4+k^2+1$
整数$(k,n)$をすべて求めよ.
この動画を見る 
PAGE TOP