2023高校入試解説12問目 台形と半円 解き方2通り 日大習志野(改) - 質問解決D.B.(データベース)

2023高校入試解説12問目 台形と半円 解き方2通り 日大習志野(改)

問題文全文(内容文):
AD94
半円Oの面積=?
*図は動画内参照
2023日本大学習志野高等学校
単元: #数学(中学生)#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
AD94
半円Oの面積=?
*図は動画内参照
2023日本大学習志野高等学校
投稿日:2023.01.19

<関連動画>

【数A】図形の性質:<これを見て思い出そう>三角形の重心の性質 ~何対何?~

アイキャッチ画像
単元: #数A#図形の性質#内心・外心・重心とチェバ・メネラウス#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
三角形の重心における、頂点→重心:重心→中点の線分の比を導出する動画になります。
この動画を見る 

福田の数学〜2023年共通テスト速報〜数学IA第4問整数〜長方形のタイルを並べて長方形を作る

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師: 福田次郎
問題文全文(内容文):
第4問
色のついた長方形を並べて正方形や長方形を作ることを考える。色のついた長方形は、向きを変えずにすき間なく並べることとし、色のついた長方形は十分あるものとする。
(1)横の長さが462で縦の長さが110である赤い長方形を、図1(※動画参照)のように並べて正方形や長方形を作ることを考える。
462と110の両方を割り切る素数のうち最大のものは    である。
赤い長方形を並べて作ることができる正方形のうち、辺の長さが最小であるものは、一辺の長さが    のものである。
また、赤い長方形を並べて正方形ではない長方形を作るとき、横の長さと縦の長さの差の絶対値が最小になるのは、462の約数と110の約数を考えると、差の絶対値が    になるときであることがわかる。
縦の長さが横の長さより    長い長方形のうち、横の長さが最小であるものは、横の長さが    のものである。
(2)花子さんと太郎さんは、(1)で用いた赤い長方形を1枚以上並べて長方形を作り、その右側に横の長さが363で縦の長さが154である青い長方形を1枚以上並べて、図2(※動画参照)のような正方形や長方形を作ることを考えている。
このとき、赤い長方形を並べてできる長方形の縦の長さと、青い長方形を並べてできる長方形の縦の長さは等しい。よって、図2のような長方形のうち、縦の長さが最小のものは、縦の長さが    のものであり、図2のような長方形は縦の長さが    の倍数である。
二人は、次のように話している。
花子:赤い長方形と青い長方形を図2のように並べて正方形を作ってみようよ。
太郎:赤い長方形の横の長さが462で青い長方形の横の長さが363だから、図2のような正方形の横の長さは462と363を組み合わせて作ることができる長さでないといけないね。
花子:正方形だから、横の長さは    の倍数でもないといけないね。
462と363の最大公約数は    であり、    の倍数のうちで    の倍数でもある最小の正の整数は    である。
これらのことと、使う長方形の枚数が赤い長方形も青い長方形も1枚以上であることから、図2のような正方形のうち、辺の長さが最小であるものは、一辺の長さが    のものであることがわかる。

2023共通テスト過去問
この動画を見る 

福田のおもしろ数学172〜1000枚の1円玉を10個の袋に入れて1000円までのすべての金額が払えるようにする方法

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
1000枚の1円玉を10個の袋に分けます。適当な袋を組み合わせて1円から1000円まですべてを表せるようにするにはどう分ければいい?
この動画を見る 

福田の数学〜青山学院大学2023年理工学部第3問〜放物線上の4点で作る四角形の面積の最大

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#微分法と積分法#学校別大学入試過去問解説(数学)#数学(高校生)#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):
3 点Oを原点とするxy平面上の放物線
y=x2+4x
Cとする。また、放物線C上に点A(4,0), P(p, p2+4p), Q(q, q2+4q)をとる。ただし、0<pq<4 とする。
(1)放物線Cの接線のうち、直線APと傾きが等しいものをlとする。接線lの方程式を求めよ。
(2)点Pを固定する。点Qがpq<4 を満たしながら動くとき、四角形OAQPの面積の最大値をpを用いて表せ。
(3)(2)で求めた四角形OAQPの面積の最大値をS(p)とおく。0<p<4 のとき、
関数S(p)の最大値を求めよ。
この動画を見る 

慶應女子2021 関数 B

アイキャッチ画像
単元: #数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
△ABCの内接円の半径r=?
*図は動画内参照

2021慶應義塾女子高等学校
この動画を見る 
PAGE TOP preload imagepreload image