2023高校入試解説12問目 台形と半円 解き方2通り 日大習志野(改) - 質問解決D.B.(データベース)

2023高校入試解説12問目 台形と半円 解き方2通り 日大習志野(改)

問題文全文(内容文):
$AD=\frac{9}{4}$
半円Oの面積=?
*図は動画内参照
2023日本大学習志野高等学校
単元: #数学(中学生)#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$AD=\frac{9}{4}$
半円Oの面積=?
*図は動画内参照
2023日本大学習志野高等学校
投稿日:2023.01.19

<関連動画>

【高校数学】n進法をどこよりも丁寧に~2進法2進数~ 5-10【数学A】

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1) n進法を10進法で表す
(a)$ 101101_{ (2) }$
(b)$ 21120_{ (3) }$
(2) 10進法で表された234を6進法, 3進法, 2進数で表せ
この動画を見る 

【数学A/整数】約数の個数と総和

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
180の約数の個数とその総和を求めよ。
この動画を見る 

最短経路 他の問題もあり

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
最短経路
AからBまで最短距離で行く。
(1)全部で何通り?
(2)Dを通らない場合は何通り?
(3)Eを通らない場合は何通り?
(4)CもDも通る場合は何通り?
(5)CもDも通らない場合は何通り?
この動画を見る 

福田の数学〜上智大学2021年TEAP利用理系第1問(2)〜n進法

アイキャッチ画像
単元: #計算と数の性質#数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#規則性(周期算・方陣算・数列・日暦算・N進法)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(2)nを20以上の整数とする。n進法で表したとき、$n^3$の位の数が$1,n^2$の位の数が2,
$n^1$の位の数が$3,n^0$の位の数が0である数$1230_{(n)}$を$n+1$進法で表すと$(n+1)^2$の位
の数は$\boxed{\ \ あ\ \ }$であり、$(n+1)^1$の位の数は$\boxed{\ \ い\ \ }$であり、$(n+1)^0$の位の数は$\boxed{\ \ う\ \ }$である。

$\boxed{\ \ あ\ \ }\ ~\ \boxed{\ \ う\ \ }$の選択肢:
$(\textrm{a})0  (\textrm{b})1  (\textrm{c})2  (\textrm{d})3$
$(\textrm{e})n-2  (\textrm{f})n-3  (\textrm{g})n-1  (\textrm{g})n$  

2021上智大学理系過去問
この動画を見る 

福田の数学〜慶應義塾大学2023年理工学部第3問〜確率と漸化式(難問)Part3

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 何も入っていない2つの袋A,Bがある。いま、「硬貨を1枚投げて表が出たら袋A、裏が出たら袋Bを選び、以下のルールに従って選んだ袋の中に玉を入れる」
という操作を繰り返す。
ルール
・選んだ袋の中に入っている玉の数がもう一方の袋の中に入っている玉の数より多いか、2つの袋の中に入っている玉の数が同じとき、選んだ袋の中に玉を1個入れる。
・選んだ袋の中に入っている玉の数がもう一方の袋の中に入っている玉の数より少ないとき、選んだ袋の中に入っている玉の数が、もう一方の袋の中に入っている玉の数と同じになるまで選んだ袋の中に玉をいれる。

たとえば、上の操作を3回行ったとき、硬貨が順に表、表、裏と出たとすると、
A,B2つの袋の中の玉の数は次のように変化する。
A:0個 B:0個 → A:1個 B:0個 → A:2個 B:0個 → A:2個 B:2個
(1)4回目の操作を終えたとき、袋Aの中に3個以上の玉が入っている確率は$\boxed{\ \ カ\ \ }$である。また、4回目の操作を終えた時点で袋Aの中に3個以上の玉が入っているという条件の下で、7回目の操作を終えたとき袋Bの中に入っている玉の数が3個以下である条件付き確率は$\boxed{\ \ キ\ \ }$である。
(2)$n$回目の操作を終えたとき、袋Aの中に入っている玉の数のほうが、袋Bの中に入っている玉の数より多い確率を$p_n$とする。
$p_{n+1}$を$p_n$を用いて表すと$p_{n+1}$=$\boxed{\ \ ク\ \ }$となり、これより$p_n$を$n$を用いて表すと$p_n$=$\boxed{\ \ ケ\ \ }$となる。
(3)$n$回目($n$≧4)の操作を終えたとき、袋Aの中に$n-1$個以上の玉が入っている確率は$\boxed{\ \ コ\ \ }$であり、$n-2$個以上の玉が入っている確率は$\boxed{\ \ サ\ \ }$である。
この動画を見る 
PAGE TOP