【高校数学】 数B-69 等比数列とその和⑤ - 質問解決D.B.(データベース)

【高校数学】 数B-69 等比数列とその和⑤

問題文全文(内容文):
次の等比数列の初項と公比を求めよう.

①初項から第3項までの和が3,初項から第6項までの和が27

②第3項が4,初項から第3項までの和が7
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の等比数列の初項と公比を求めよう.

①初項から第3項までの和が3,初項から第6項までの和が27

②第3項が4,初項から第3項までの和が7
投稿日:2016.02.02

<関連動画>

福田の数学〜慶應義塾大学2021年総合政策学部第5問〜人形を並べる方法と漸化式

単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{5}}$(1)同じ人形$n$体(nは正の整数)を、1体または2体ずつ前方を向かせて列に並べる。
例えば$n=10$のとき、下図(※動画参照)のような並べ方がある。

ここで、$n$体の人形の並べ方の総数を$a_n$とすると
$a_1=1,\ a_2=2,\ a_3=3,\ldots,\ a_{12}=\boxed{\ \ アイウ\ \ },\ a_{13}=\boxed{\ \ エオカ\ \ },\ a_{14}=\boxed{\ \ キクケ\ \ }$
となる。ただし、列の先頭の人形の前には門があり、その門の方向を前方とする。

(2)同じ人形n体(nは2以上の整数)を、2体または3体ずつ前方を向かせて列に並べる。
その並べ方の総数を$b_n$とすると
$b_2=1,\ b_3=1,\ b_4=1,\ldots,\ b_{12}=\boxed{\ \ コサシ\ \ },\ b_{13}=\boxed{\ \ スセソ\ \ },\ b_{14}=\boxed{\ \ タチツ\ \ }$
となる。ただし、列の先頭の人形の前には門があり、その門の方向を前方とする。

2021慶應義塾大学整合政策学部過去問
この動画を見る 

熊本大 漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#熊本大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$S_n=2a_n+n^2$
2通りの方法で一般項を求めよ

出典:熊本大学 過去問
この動画を見る 

2022都立入試 整数問題証明(11の倍数)

アイキャッチ画像
単元: #数学(中学生)#数A#数Ⅱ#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#恒等式・等式・不等式の証明#数列#数列とその和(等差・等比・階差・Σ)#高校入試過去問(数学)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
2022都立入試 整数問題証明に関して解説していきます.
この動画を見る 

【よく出る応用問題!】f(n)の絡む漸化式を5分で解説!〔数学、高校数学〕

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 3rd School
問題文全文(内容文):
f(n)の絡む漸化式について解説します。
以下の漸化式で表される数列の一般項を求めよ。
$a_{n+1}=2a_n+3n-3$ $a_1=1$
この動画を見る 

【高校数学】 数B-76 階差数列②

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の数列の一般項を求めよう.

①$10,8,4,-2,-10,・・・$

②$1,4,13,40,121,・・・$
この動画を見る 
PAGE TOP