【数Ⅲ】極限:次の無限級数の和を求めよう。Σ[n=1~∞](-1/3)^n sin(nπ/2) - 質問解決D.B.(データベース)

【数Ⅲ】極限:次の無限級数の和を求めよう。Σ[n=1~∞](-1/3)^n sin(nπ/2)

問題文全文(内容文):
次の無限級数の和を求めよう。
$\displaystyle \sum_{n=1}^{\infty}\left(-\dfrac{1}{3}\right)^n \sin\dfrac{n\pi}{2}$
チャプター:

0:00 オープニング
0:05 問題文
0:12 問題解説
1:21 名言

単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の無限級数の和を求めよう。
$\displaystyle \sum_{n=1}^{\infty}\left(-\dfrac{1}{3}\right)^n \sin\dfrac{n\pi}{2}$
投稿日:2021.01.12

<関連動画>

【高校数学】数Ⅲ:関数:逆関数と合成関数:逆関数の求め方【NI・SHI・NOがていねいに解説】

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の関数の逆関数を求めよ。
$\displaystyle y=\frac{x-2}{3x+1}$
この動画を見る 

数学「大学入試良問集」【19−8 極限で定義された関数】を宇宙一わかりやすく

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
正の数$x$に対して定義された次の関数$f(x)$を考える。
$f(x)=\displaystyle \lim_{ n \to \infty }\displaystyle \frac{4x^{n+1}+ax^n+log\ x+1}{x^{n+2}+x^n+1}$
ここで、$a$は定数である。
このとき、次の各問いに答えよ。

(1)
極限計算により関数$f(x)$を求めると
$0 \lt x \lt 1$のとき$f(x)=\fcolorbox{black}{ #fffff }{ ア },f(1)=\fcolorbox{black}{ #fffff }{ イ },x \gt 1$のとき$f(x)=\fcolorbox{black}{ #fffff }{ ウ }$。

(2)
関数$f(x)$が$x=1$で連続になるときの$a$の値を求めよ。
以下、$a$はこの値とする。

(3)
関数$f(x)$の増減、極値および$f(x)=0$をみたす$x$の値を調べて、関数$f(x)$のグラフ$C$の概形を描け。

(4)
関数$f(x)$のグラフ$C$と直線$x=\sqrt{ 3 }$および$x$軸で囲まれる部分の面積を求めよ。
この動画を見る 

福田のわかった数学〜高校3年生理系049〜極限(49)中間値の定理(3)

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 中間値の定理(3)\\
Aさんは300km離れた地点まで車でちょうど5時間かけて移動した。\\
このときこの300kmの中のどこか60kmの区間を\\
ちょうど1時間で通過したことを示せ。
\end{eqnarray}
この動画を見る 

【高校数学】分数関数と一次関数の不等式をグラフを使わない裏ワザ!

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の不等式を解け。
$\displaystyle\frac{3x-4}{2x-3} < x$
この動画を見る 

福田の1.5倍速演習〜合格する重要問題039〜早稲田大学2019年度理工学部第2問〜正n角形の周の長さと極限

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
nは3以上の自然数とする。面積1の正n角形$P_n$を考え、その周の
長さを$L_n$とする。次の問いに答えよ。
(1)$(L_n)^2$を求めよ。
(2)$\lim_{n \to \infty}L_n$を求めよ。
(3)$n \lt k$ならば$(L_n)^2 \gt (L_k)^2$となることを示せ。

2019早稲田大学理工学部過去問
この動画を見る 
PAGE TOP