【数Ⅲ】極限:次の無限級数の和を求めよう。Σ[n=1~∞](-1/3)^n sin(nπ/2) - 質問解決D.B.(データベース)

【数Ⅲ】極限:次の無限級数の和を求めよう。Σ[n=1~∞](-1/3)^n sin(nπ/2)

問題文全文(内容文):
次の無限級数の和を求めよう。
$\displaystyle \sum_{n=1}^{\infty}\left(-\dfrac{1}{3}\right)^n \sin\dfrac{n\pi}{2}$
チャプター:

0:00 オープニング
0:05 問題文
0:12 問題解説
1:21 名言

単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の無限級数の和を求めよう。
$\displaystyle \sum_{n=1}^{\infty}\left(-\dfrac{1}{3}\right)^n \sin\dfrac{n\pi}{2}$
投稿日:2021.01.12

<関連動画>

福田のおもしろ数学164〜階乗とn乗の商の極限

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\displaystyle\lim_{n \to \infty}\frac{n!}{3^n}$と$\displaystyle\lim_{n \to \infty}\frac{n!}{n^n}$ を求めなさい。
この動画を見る 

福田のおもしろ数学112〜多変数の式の最大最小

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
実数$x$,$y$,$z$が0≦$x$≦1, 0≦$y$≦1, 2≦$z$≦3 を満たして変わるとき、$\displaystyle\frac{z-y}{z-x}$ の最大値、最小値を求めよ。
この動画を見る 

慶應(医)3次方程式 ほぼ文系知識で解けます Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
慶応義塾大学過去問題
$8x^3-6x+1=0$の3つの解をα,β,γ
(1)0<x<1の範囲にある実数解の個数
(2)$\displaystyle\sum_{n=0}^{\infty}(α^n+β^n+γ^n)$
この動画を見る 

福田の1.5倍速演習〜合格する重要問題077〜東京大学2018年度理系第3問〜ベクトル方程式の表す点の存在範囲と面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上のベクトル#微分法と積分法#ベクトルと平面図形、ベクトル方程式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#面積、体積#東京大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
第3問
放物線y=$x^2$のうち-1≦x≦1を満たす部分をCとする。
座標平面上の原点Oと点A(1,0)を考える。k>0を実数とする。点PがC上を動き、点Qが線分OA上を動くとき
$\overrightarrow{OR}$=$\frac{1}{k}\overrightarrow{OP}$+$k\overrightarrow{OQ}$
を満たす点Rが動く領域の面積をS(k)とする。
S(k)および$\displaystyle\lim_{k \to +0}S(k)$, $\displaystyle\lim_{k \to \infty}S(k)$を求めよ。

2018東京大学理系過去問
この動画を見る 

福田のわかった数学〜高校3年生理系089〜グラフを描こう(11)分数関数、凹凸、漸近線

アイキャッチ画像
単元: #関数と極限#微分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ グラフを描こう(11)

$y=\frac{x^3}{x^2-1}$ のグラフを描け。ただし、凹凸、漸近線も調べよ。
この動画を見る 
PAGE TOP