問題文全文(内容文):
$x>0$のとき、次の不等式を証明せよ。
(1) $sin x>x-\displaystyle \frac{x^2}{2}$
(2) $1-\displaystyle \frac{x}{2}<\displaystyle \frac{1}{\sqrt{1+x}}<1-\displaystyle \frac{x}{2}+\displaystyle \frac{3x^2}{8}$
$x>0$のとき、次の不等式を証明せよ。
(1) $sin x>x-\displaystyle \frac{x^2}{2}$
(2) $1-\displaystyle \frac{x}{2}<\displaystyle \frac{1}{\sqrt{1+x}}<1-\displaystyle \frac{x}{2}+\displaystyle \frac{3x^2}{8}$
チャプター:
0:00 問題概要
0:50 (1)解説
3:13 証明方針のおさらい。2回微分をする理由
6:42 (2)解説
単元:
#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学Ⅲ#中高教材#微分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
$x>0$のとき、次の不等式を証明せよ。
(1) $sin x>x-\displaystyle \frac{x^2}{2}$
(2) $1-\displaystyle \frac{x}{2}<\displaystyle \frac{1}{\sqrt{1+x}}<1-\displaystyle \frac{x}{2}+\displaystyle \frac{3x^2}{8}$
$x>0$のとき、次の不等式を証明せよ。
(1) $sin x>x-\displaystyle \frac{x^2}{2}$
(2) $1-\displaystyle \frac{x}{2}<\displaystyle \frac{1}{\sqrt{1+x}}<1-\displaystyle \frac{x}{2}+\displaystyle \frac{3x^2}{8}$
投稿日:2025.01.22