【等比数列の和はこれで一撃!】等比数列の和の公式は覚えなくていいです〔数学、高校数学〕 - 質問解決D.B.(データベース)

【等比数列の和はこれで一撃!】等比数列の和の公式は覚えなくていいです〔数学、高校数学〕

問題文全文(内容文):
5,10,20,40,80$\cdots$
で表される等比数列の第n項までの和を求めよ。
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 3rd School
問題文全文(内容文):
5,10,20,40,80$\cdots$
で表される等比数列の第n項までの和を求めよ。
投稿日:2022.06.01

<関連動画>

徳島大 連立漸化式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#徳島大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_{1}=1,b_{1}=0$
$a_{n+1}=5a_{n}+4b_{n}$
$b_{n+1}=a_{n}+5b_{n}$

(1)
$a_{n+1}+ \alpha b_{n+1}=\beta (a_{n}+\alpha b_{n})$となる$\alpha,\beta$を2組求めよ

(2)
$a_{n},b_{n}$の一般項

(3)
$\displaystyle \sum_{k=1}^n ak$

出典:2012年徳島大学 過去問
この動画を見る 

福田の数学〜立教大学2021年理学部第3問〜定積分の漸化式と回転体の体積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#数列#漸化式#学校別大学入試過去問解説(数学)#不定積分・定積分#立教大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} nを0以上の整数とする。定積分\\
I_n=\int_1^e\frac{(\log x)^n}{x^2}\ dx\\
について、次の問(1)~(4)に答えよ。ただし、eは自然対数の底である。\\
(1)I_0, I_1の値をそれぞれ求めよ。\\
(2)I_{n+1}をI_nとnを用いて表せ。\\
(3)x \gt 0とする。関数f(x)=\frac{(\log x)^2}{x}\ の増減表を書け。\\
ただし、極値も増減表に記入すること。\\
(4)座標平面上の曲線\ y=\frac{(\log x)^2}{x}, x軸と直線x=eとで囲まれた図形を、\\
x軸の周りに1回転させてできる立体の体積Vを求めよ。
\end{eqnarray}

2021立教大学理工学部過去問
この動画を見る 

背景を見破れ!

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.

$\dfrac{1}{2!9!}+\dfrac{1}{3!8!}+\dfrac{1}{4!7!}+\dfrac{1}{5!6!}=\dfrac{n}{10!}$

$\displaystyle \sum_{k=1}^{6}\dfrac{1}{k!(13-k)!}=\dfrac{n}{12!}$
この動画を見る 

北海道教育大 漸化式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#北海道教育大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
'91北海道教育大学過去問題
$a_1=b_1=1$ n自然数
$a_{n+1}=a_n+b_n$
$b_{n+1}=4a_n+b_n$
(1){ $a_n+kb_n$ }が等比数列となるようなkを求めよ。
(2)$a_n,b_n$の一般項
この動画を見る 

数列の和 解説2通り!!

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 数学を数楽に
問題文全文(内容文):
$(2-1) \times (2+1) + (3-2)(3+2)+(4-3)(4+3)+ \cdots +(99-98)(99+98)+(100-99)(100+99)$
この動画を見る 
PAGE TOP