富山大 複雑な二次関数の最小値 - 質問解決D.B.(データベース)

富山大 複雑な二次関数の最小値

問題文全文(内容文):
$f(x)=x^2+ax+3$
$g(x)=f(x)f \left(\dfrac{1}{x}\right),x\neq 0$である.
$g(x)$の最小値が負となる$a$の範囲を求めよ.

2015富山大過去問
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^2+ax+3$
$g(x)=f(x)f \left(\dfrac{1}{x}\right),x\neq 0$である.
$g(x)$の最小値が負となる$a$の範囲を求めよ.

2015富山大過去問
投稿日:2020.08.27

<関連動画>

千葉大 整数解を持つ条件

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#整数の性質#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
Pは素数であり,
$P^2+(5-P^2)x-3P=0$が整数解をもつのは$P=2$に限ることを示せ.

千葉大過去問
この動画を見る 

【数Ⅰ】図形と計量:三角比の表③

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
・sin0°, sin90°, sin180°の値を求めよ。
・cos0°, cos90°, cos180°の値を求めよ。
・tan0°, tan90°, tan180°の値を求めよ。
この動画を見る 

"2025"を含む予想問題(4):入試予想問題~全国入試問題解法

単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#数Ⅰ#数と式#数学(高校生)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$x = \sqrt{2025}のとき$
$x^2 - 87x + 1890$を求めよ
この動画を見る 

福田の数学〜消去法の活用〜明治大学2023年全学部統一ⅠⅡAB第1問(3)〜データの分析中央値と平均

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#データの分析#データの分析#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$
(3)データAの大きさは15であり、データAの値は1,2,3,4,5のいずれかであるとする。
1,2,3,4,5のそれぞれを階級値であると考えたとき、その度数はどれも1以上であるとする。階級値1の度数が2、データAの中央値が2、データAの平均値がちょうど3であるとき、階級値5の度数は$\boxed{\ \ サ\ \ }$である。
この動画を見る 

三角比の拡張 #Shorts

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
三角比の拡張に関して解説していきます.
この動画を見る 
PAGE TOP