【高校数学】条件付き確率~基本の考えと使い方~ 2-7【数学A】 - 質問解決D.B.(データベース)

【高校数学】条件付き確率~基本の考えと使い方~ 2-7【数学A】

問題文全文(内容文):
ある高校の1年生の男女比は8:7であり、メガネをかけた女子生徒は1年生全体の2 割であるという。
女子生徒の1人を選び出したとき、メガネをかけている確率を求めよ。

選び出された1人の生徒が女子であるという事象をA、メガネをかけているという事象をBとする。
チャプター:

00:00 はじまり

00:21 言葉の説明

02:38 例題演習

05:35 まとめ

05:53 まとめノート

単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
ある高校の1年生の男女比は8:7であり、メガネをかけた女子生徒は1年生全体の2 割であるという。
女子生徒の1人を選び出したとき、メガネをかけている確率を求めよ。

選び出された1人の生徒が女子であるという事象をA、メガネをかけているという事象をBとする。
投稿日:2020.08.08

<関連動画>

福田の数学〜立教大学2022年経済学部第1問(4)〜表が連続して出ない確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
コインを5回投げるとき、表が連続して2回以上出ない確率を求めよ。
ただし、コインを1回投げたとき、 表が出る確率および裏が出る確率はそれぞれ1/2であるとする。

2022立教大学経済学部過去問
この動画を見る 

東京理科大 確率 サイコロ3個 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
東京理科大学過去問題
サイコロ3個を投げる。
次のそれぞれの確率。
(1)3または6が少なくとも1つ出る
(2)3または5または6が少なくとも1つ出る
(3)出た目の積が15の倍数
この動画を見る 

Japanese Mathematics Olympic Question 2016 数学オリンピック

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#場合の数と確率#場合の数#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
How many possible ways are there to divide this 11×11 grid into 5 rectangles.
where one of them must not share any of its side with the original rectangle(11×11).
Do not consider any rotation or flipping.
この動画を見る 

【理数個別の過去問解説】2020年度北海道大学 数学 第3問(1)(2)解説

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
nを2以上の自然数とする。一個のサイコロを続けてn回投げる試行を行い、
出た目を順に$X_1X_2・・・X_n$とする。
(1)$X_1X_2・・・X_n$の最大公約数が3となる確率を$n$の式で表せ。
(2)$X_1X_2・・・X_n$の最大公約数が1となる確率を$n$の式で表せ。
この動画を見る 

福田の数学〜慶應義塾大学2024年薬学部第3問〜ウイルスの保有と症状に関する条件付き確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 10万人の集団があり、この集団に対してウイルスXとウイルスYの保有及び症状の有無を調べた。
この集団のうち2万人がウイルスXを保有し、ウイルスX保有者の$\frac{1}{4}$、ウイルスX非保有者の$\frac{1}{4}$がウイルスYを保有していた。ウイルスXが原因でみられる症状は発熱のみ、ウイルスYが原因でみられる症状は腹痛のみであり、ウイルスを保有していなくても発熱や腹痛がみられることがある。
過去の研究から、発熱はウイルスX保有者に確率$\frac{3}{4}$、ウイルスX非保有者に確率$\frac{1}{10}$でみられ、腹痛はウイルスY保有者に確率$\frac{9}{10}$、ウイルスY非保有者に確率$\frac{1}{5}$でみられることがわかっている。なお、発熱と腹痛はそれぞれ独立に発症し互いに影響しないものとする。
(1)この集団から無作為に選ばれた1人がウイルスXを保有していないが発熱がみられる確率は$\boxed{\ \ ト\ \ }$である。
(2)この集団から無作為に選ばれた1人がウイルスYを保有していないが発熱がみられる確率は$\boxed{\ \ ナ\ \ }$である。
(3)この集団から無作為に1人を選んでウイルスの保有および症状の有無を調べて集団に戻す試行を3回繰り返した。
(i)3回の試行で選ばれた人のうち、1人のみに腹痛がみられる確率は$\boxed{\ \ ニ\ \ }$である。
(ii)3回の試行で選ばれた人のうち、1人のみに腹痛がみられるとき、選ばれた人のうち少なくとも1人がウイルスYを保有している確率は$\boxed{\ \ ヌ\ \ }$である。
この動画を見る 
PAGE TOP