数学の魔術師ヨビノリのたくみさん5度目の登場 東大入試問題 Mathematics Japanese university entrance examTokyo University - 質問解決D.B.(データベース)

数学の魔術師ヨビノリのたくみさん5度目の登場 東大入試問題 Mathematics Japanese university entrance examTokyo University

問題文全文(内容文):
'08東京大学過去問題
$y=x^2$上にP,Q
線分PQの中点のy座標をh
(1)PQの長さLと傾きmでhを表せ
(2)Lを固定したとき、hの最小値
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
'08東京大学過去問題
$y=x^2$上にP,Q
線分PQの中点のy座標をh
(1)PQの長さLと傾きmでhを表せ
(2)Lを固定したとき、hの最小値
投稿日:2018.12.16

<関連動画>

大分大 対数の基本

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#大分大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$log_{10}2$の小数第一位を求めよ

$2^{21}$と$5^9$の大小比較

出典:大分大学 過去問
この動画を見る 

大学入試の連立方程式 東北学院大

アイキャッチ画像
単元: #連立方程式#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
連立方程式を解け
\begin{eqnarray}
\left\{
\begin{array}{l}
x(y+z)=5 \\
y(z+x)=8 \\
z(x+y)=9
\end{array}
\right.
\end{eqnarray}

東北学院大学
この動画を見る 

大学入試問題#562「証明問題じゃなきゃ解けるのか?」 東京帝国大学1937 #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#加法定理とその応用#数列#数学的帰納法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$n$:正の整数

$\displaystyle \int_{0}^{\pi} \displaystyle \frac{\sin(2n-1)x}{\sin\ x}\ dx=\pi$を示せ

出典:1937年東京帝国大学 入試問題
この動画を見る 

【比例式】いきなり文字で置くな!【数学 入試問題】【福島大学】

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#数学(高校生)#福島大学
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
正の実数$x,y,z$が$\dfrac{yz}{x}=\dfrac{zx}{4y}=\dfrac{xy}{9z}$を満たすとき、$\dfrac{x+y+Z}{\sqrt{x^2+y^2+z^2}}$の値は?

福島大過去問
この動画を見る 

福田の数学〜上智大学2022年TEAP文系型第2問〜空間の位置ベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
空間内に立方体ABCD-EFGHがある。辺ABを2:1に内分
する点をP、線分CPの中点をQとする。
(1)$\overrightarrow{ AQ }=\frac{\boxed{ス}}{\boxed{セ}}\overrightarrow{ AB }+$
$\frac{\boxed{ソ}}{\boxed{タ}}\overrightarrow{ AD }$である。
(2)線分AG上の点Rを$\overrightarrow{ QR }∟\overrightarrow{ AG }$となるようにとると
$\overrightarrow{ AR }=\frac{\boxed{チ}}{\boxed{ツ}}\overrightarrow{ AG }$である。
(3)直線QRが平面EFGHと交わる点をSとすると
$\overrightarrow{ AS }=\frac{\boxed{テ}}{\boxed{ト}\overrightarrow{ AB }}+$
$\frac{\boxed{ナ}}{\boxed{二}}\overrightarrow{ AD }+\boxed{ヌ}\ \overrightarrow{ AE }$である。

2022上智大学文系過去問
この動画を見る 
PAGE TOP