数学の魔術師ヨビノリのたくみさん5度目の登場 東大入試問題 Mathematics Japanese university entrance examTokyo University - 質問解決D.B.(データベース)

数学の魔術師ヨビノリのたくみさん5度目の登場 東大入試問題 Mathematics Japanese university entrance examTokyo University

問題文全文(内容文):
'08東京大学過去問題
$y=x^2$上にP,Q
線分PQの中点のy座標をh
(1)PQの長さLと傾きmでhを表せ
(2)Lを固定したとき、hの最小値
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
'08東京大学過去問題
$y=x^2$上にP,Q
線分PQの中点のy座標をh
(1)PQの長さLと傾きmでhを表せ
(2)Lを固定したとき、hの最小値
投稿日:2018.12.16

<関連動画>

6乗−6乗 因数分解 京都産業大学

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
因数分解せよ
$x^6-y^6$

京都産業大学
この動画を見る 

福田の数学〜立教大学2025理学部第1問(2)〜内積と絶対値の計算問題

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(2)$2$つの平面ベクトル$\overrightarrow{a},\overrightarrow{b}$は、

$\vert \overrightarrow{a}+\overrightarrow{b} \vert=4,\vert \overrightarrow{a}-\overrightarrow{b} \vert =2$を満たすとする。

このとき、内積$\overrightarrow{a}・\overrightarrow{b}$の値は$\boxed{イ}$である。

また、$\vert 2\overrightarrow{a}-3\overrightarrow{b} \vert^2+\vert 3 \overrightarrow{a}-2\overrightarrow{b} \vert^2$の値は$\boxed{ウ}$である。

$2025$年立教大学理学部過去問題
この動画を見る 

福田の数学〜一橋大学2022年文系第3問〜同値関係の証明と不等式の表す領域

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#式と証明#一次不等式(不等式・絶対値のある方程式・不等式)#図形と方程式#恒等式・等式・不等式の証明#軌跡と領域#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
次の問いに答えよ。
(1)実数x,yについて、$「|x-y| \leqq x+y」$であることの必要十分条件は
「$x \geqq 0$かつ$y \geqq 0$ 」であることを示せ。
(2)次の不等式で定まるxy平面上の領域を図示せよ。
$|1+y-2x^2-y^2| \leqq 1-y-y^2$

2022一橋大学文系過去問
この動画を見る 

大学入試問題#318 立教大学 改 (2021) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{e}\displaystyle \frac{(log\ x)^4}{x^2}dx$

出典:2021年立教大学 入試問題
この動画を見る 

福田の数学〜慶應義塾大学2024年医学部第1問(2)〜楕円の接線とx軸y軸で作る三角形の面積の最小

アイキャッチ画像
単元: #大学入試過去問(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (2)座標平面の第1象限の点(X,Y)において楕円$\frac{x^2}{3}$+$\frac{y^2}{2}$=1 に接する直線を$l$とすると、$l$の傾きは$\boxed{\ \ (お)\ \ }$である。また、原点をO、$l$と$x$軸, $y$軸との交点をそれぞれP, Qとすると、三角形OPQの面積は(X,Y)=($\boxed{\ \ (か)\ \ }$, $\boxed{\ \ (き)\ \ }$)のときに最小値$\boxed{\ \ (く)\ \ }$をとる。
この動画を見る 
PAGE TOP