【高校数学】 数B-72 和の記号Σ(シグマ)① - 質問解決D.B.(データベース)

【高校数学】 数B-72 和の記号Σ(シグマ)①

問題文全文(内容文):
$\displaystyle \sum_{k=1}^n k=①$

$\displaystyle \sum_{k=1}^n k^2=②$

$\displaystyle \sum_{k=1}^n k^3=③$

$\displaystyle \sum_{k=1}^n C=④\quad \left(\displaystyle \sum_{k=1}^n 3=⑤\right)$

$\displaystyle \sum_{k=1}^n r^k=⑥\quad (r\neq 1)$

$\displaystyle \sum_{k=1}^n r^{k-1}=⑦\quad (r\neq 1)$

次の和を項を書き並べて表そう.

⑧$\displaystyle \sum_{k=1}^5 2^k$

⑨$\displaystyle \sum_{k=3}^{n-1} k^2$


単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$\displaystyle \sum_{k=1}^n k=①$

$\displaystyle \sum_{k=1}^n k^2=②$

$\displaystyle \sum_{k=1}^n k^3=③$

$\displaystyle \sum_{k=1}^n C=④\quad \left(\displaystyle \sum_{k=1}^n 3=⑤\right)$

$\displaystyle \sum_{k=1}^n r^k=⑥\quad (r\neq 1)$

$\displaystyle \sum_{k=1}^n r^{k-1}=⑦\quad (r\neq 1)$

次の和を項を書き並べて表そう.

⑧$\displaystyle \sum_{k=1}^5 2^k$

⑨$\displaystyle \sum_{k=3}^{n-1} k^2$


投稿日:2016.02.05

<関連動画>

等差数列の一般項 山形大

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#山形大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
2013年 山形大学 過去問

公差が0でない等差数列{$a_n$}
$a_5^2+a_6^2=a_7^2+a_8^2$
$\displaystyle \sum_{n=1}^{13} a_n=13$
一般項$a_n$を求めよ。
この動画を見る 

数列の和の公式の利用

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$\displaystyle \sum_{k=1}^n (-1)^{k+1}k^2$
$1^2-2^2+3^2-4^2+5^2-6^2・・・・・・$
この動画を見る 

数列 大阪大

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$は自然数であり,$a_n=2^n,b_n=3n+2$とする.
数列${a_n}$の項のうち数列${b_n}$の項でもあるものを小さい順に並べた数列${C_n}$を求めよ.

1979大阪大過去問
この動画を見る 

福田の数学〜慶應義塾大学2021年薬学部第1問(5)〜n進法と等比数列

アイキャッチ画像
単元: #計算と数の性質#数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#規則性(周期算・方陣算・数列・日暦算・N進法)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(5)3進法で表された3n桁の整数
$\overbrace{ 210210\cdots210_{(3)}}^{ 3n桁 }$
がある(ただし、nは自然数とする)。この数は、$1 \leqq k \leqq n$を満たす全て
の自然数$k$に対して、最小の位から数えて3k番目の位の数が$2、3k-1$番目の位
の数が$1、3k-2$番目の位の数が0である。この数を10進法で表した数を$a_n$
とおく。
$(\textrm{i})a_2=\boxed{\ \ ク\ \ }$である。

2021慶應義塾大学薬学部過去問
$(\textrm{ii})a_n$をnの式で表すと、$\boxed{\ \ ケ\ \ }$である。
この動画を見る 

【数B】高2生必見!! 2019年度8月 第2回 K塾高2模試 大問6_数列

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
数列{$a_n$}($n=1,2,3,...$)は初項-8、公差4の等差数列であり、数列{$b_n$} ($n=1,2,3,...$)は初項から第n項までの和が$S_n\dfrac{3^n}{2}(n=1,2,3,...)$で与えられ る数列である。
(1)数列{$a_n$}の一般項$a_n$を求めよ。また、数列{$a_n$}の初項から第n項までの 和を求めよ。 (2)$\displaystyle \sum_{k=1}^n (a_k)^2$を求めよ。
(3)数列{$b_n$}の一般項$b_n$を求めよ。 (4)nを3以上の整数とするとき、$\displaystyle \sum_{k=1}^n \vert a_k b_k \vert$を求めよ。
この動画を見る 
PAGE TOP