早稲田大(政)方程式の実数解 - 質問解決D.B.(データベース)

早稲田大(政)方程式の実数解

問題文全文(内容文):
$-90^{ \circ } \lt \theta \lt 90^{ \circ }$
$(\sin \theta)x^2+2(\cos2\theta)x+cos2\theta=0$が少なくとも1つの実数解をもつような$\theta$の範囲を求めよ

出典:2001年早稲田大学 政治経済学部 過去問
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$-90^{ \circ } \lt \theta \lt 90^{ \circ }$
$(\sin \theta)x^2+2(\cos2\theta)x+cos2\theta=0$が少なくとも1つの実数解をもつような$\theta$の範囲を求めよ

出典:2001年早稲田大学 政治経済学部 過去問
投稿日:2020.02.01

<関連動画>

福田のおもしろ数学473〜難しい連立方程式を解くための飛び道具

アイキャッチ画像
単元: #連立方程式#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\begin{eqnarray}
\left\{
\begin{array}{l}
5\left(x+\dfrac{1}{x}\right)=12\left(y+\dfrac{1}{y}\right)=13\left(z+\dfrac{1}{z}\right) \\
xy+yz+zx=1
\end{array}
\right.
\end{eqnarray}$

を満たす実数$x,y,z$をすべて求めよ。
この動画を見る 

複素数 基礎から

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#複素数と方程式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを計算せよ.

$\left(\dfrac{\sqrt3-i}{\sqrt2+\sqrt2 i}\right)^{100}$
この動画を見る 

戦後の京都大学の入試いけんじゃね? 京都大学医学部1946 大学入試問題#929

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$x^4-17x^2-34x-30=0$
なる方程式を解け.

1946京都大学医学部過去問題
この動画を見る 

福田の数学〜上智大学2021年TEAP利用文系第1問(1)〜指数方程式と常用対数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#指数関数と対数関数#剰余の定理・因数定理・組み立て除法と高次方程式#指数関数#対数関数#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(1)$s$を正の実数として、$x,y$の連立方程式
$\left\{
\begin{array}{1}
4^x+9^y=5\\
2^x・3^y=s\\
\end{array}
\right.$
を考える。以下では$\log_{10}2=0.301,$
$\log_{10}3=0.4771$として計算せよ。

$(\textrm{a})$この連立方程式の解が2組あるための必要十分条件は

$0 \lt s \lt \frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}$
である。

$(\textrm{b})\ s=2$のとき$x \lt y$となる解を$(x_0,\ y_0)$とする。
$y_0$を小数第3位で四捨五入した数の整数部分は$\boxed{\ \ ウ\ \ }$、
小数第1位は$\boxed{\ \ エ\ \ }$、小数第2位は$\boxed{\ \ オ\ \ }$である。

2021上智大学文系過去問
この動画を見る 

福田の数学〜立教大学2022年理学部第1問(4)〜解と係数の関係

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
2次方程式$2x^2+4x+1=0$の解を$\alpha,\ \beta(\alpha\lt \beta)$とする。実数$p,q$に対して、
2次方程式$x^2+px+q=0$の解が$\alpha^3,\ \beta^3$であるならば、
$p=\boxed{オ},\ q=\boxed{カ}$である。

2022立教大学理学部過去問
この動画を見る 
PAGE TOP