「6÷2(1+2)」簡単そうで解けない...? - 質問解決D.B.(データベース)

「6÷2(1+2)」簡単そうで解けない...?

問題文全文(内容文):
簡単そうで解けない問題 解説動画です
$6 \div 2(1+2)$
単元: #数Ⅰ#数と式#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
簡単そうで解けない問題 解説動画です
$6 \div 2(1+2)$
投稿日:2022.03.18

<関連動画>

場合分けたくさん!

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
xについての不等式
$ax>b$を解け
この動画を見る 

北海道医療大(薬・歯)式の計算

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a=\dfrac{\sqrt5-1}{2}$である.
$\dfrac{1}{a}+\dfrac{1}{a^3}+\dfrac{1}{a^5}+\dfrac{1}{a^7}$の値を求めよ.

北海道医療大(薬・歯)過去問
この動画を見る 

福田の数学〜九州大学2023年理系第3問〜ベクトルと論証PART2

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#平面上のベクトル#集合と命題(集合・命題と条件・背理法)#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 点Oを原点とする座標平面上の$\overrightarrow{0}$でない2つのベクトル
$\overrightarrow{m}$=($a$, $c$), $\overrightarrow{n}$=($b$, $d$)
に対して、D=ad-bc とおく。座標平面上のベクトル$\overrightarrow{q}$に対して、次の条件を考える。
条件Ⅰ $r\overrightarrow{m}$+$s\overrightarrow{n}$=$\overrightarrow{q}$を満たす実数r, sが存在する。
条件Ⅱ $r\overrightarrow{m}$+$s\overrightarrow{n}$=$\overrightarrow{q}$を満たす整数r, sが存在する。
以下の問いに答えよ。
(1)条件Ⅰがすべての$\overrightarrow{q}$に対して成り立つとする。D $\ne$ 0であることを示せ。
以下、D $\ne$ 0であるとする。
(2)座標平面上のベクトル$\overrightarrow{v}$, $\overrightarrow{w}$で
$\overrightarrow{m}・\overrightarrow{v}$=$\overrightarrow{n}・\overrightarrow{w}$=1, $\overrightarrow{m}・\overrightarrow{w}$=$\overrightarrow{n}・\overrightarrow{v}$=0
を満たすものを求めよ。
(3)さらにa, b, c, dが整数であるとし、x成分とy成分がともに整数であるすべてのベクトル$\overrightarrow{q}$に対して条件Ⅱが成り立つとする。Dのとりうる値をすべて求めよ。

2023九州大学理系過去問
この動画を見る 

図形と計量 正弦定理と余弦定理の応用、測量の考え方【烈's study!がていねいに解説】

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
2地点P、Q間の距離を求めるために、1つの直線上にある3地点A、B、Cをとったら、$AB=400m、BC=100\sqrt3 m,\angle QAB=30°,\angle PBA=\angle QBC=75°,\angle PCB=45°$であった。P、Q間の距離を求めよ。
この動画を見る 

【高校数学】  数Ⅰ-81  三角比⑥

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎$0° \leqq \theta \leqq 180°$のとき、次の等式を満たす$\theta$を求めよう。

①$\cos \theta=\displaystyle \frac{1}{\sqrt{ 2 }}$

②$\sin \theta=\sqrt{ 3 }$

③$\sqrt{ 3 } \tan \theta+1=0$

④$0° \leqq \theta \leqq 180°$とする。
$\sin \theta=\displaystyle \frac{4}{5}$のとき、$\cos \theta,\tan \theta$の値を求めよう。
この動画を見る 
PAGE TOP