数学「大学入試良問集」【18−4 微分と不等式の証明】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【18−4 微分と不等式の証明】を宇宙一わかりやすく

問題文全文(内容文):
$0 \lt \theta \lt \displaystyle \frac{\pi}{2}$のとき、次の不等式が成り立つことを証明せよ。
$\displaystyle \frac{1}{\theta}(\sin\theta+\tan\theta) \gt 2$
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#福島大学#数Ⅲ
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$0 \lt \theta \lt \displaystyle \frac{\pi}{2}$のとき、次の不等式が成り立つことを証明せよ。
$\displaystyle \frac{1}{\theta}(\sin\theta+\tan\theta) \gt 2$
投稿日:2021.07.02

<関連動画>

福田の1.5倍速演習〜合格する重要問題027〜神戸大学2016年度理系数学第3問〜2曲線の相接条件と回転体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#微分法#定積分#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
aを正の定数とし、2曲線$C_1:y=\log x,C_2:y=ax^2$が点Pで接している。
以下の問いに答えよ。
(1)Pの座標とaの値を求めよ。
(2)2曲線$C_1,C_2$とx軸で囲まれた部分をx軸のまわりに1回転させてできる
立体の体積を求めよ。

2016神戸大学理系過去問
この動画を見る 

岐阜薬科大 対数の不等式 良問

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\log_x y-\log_y x^{\frac{1}{2}}\lt -\dfrac{1}{2}$を満たす点$(x,y)$の領域を図示せよ.

岐阜薬科大過去問
この動画を見る 

福田のわかった数学〜高校3年生理系070〜接線(2)媒介変数表示の接線

アイキャッチ画像
単元: #平面上の曲線#微分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#媒介変数表示と極座標#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 接線(2) 媒介変数表示の接線\\
\left\{
\begin{array}{1}
x=\theta-\sin\theta\\
y=1-\cos\theta
\end{array}
\right.             \\
\\
で表される曲線の\theta=\frac{3\pi}{2}のときの点Pにおける接線を求めよ。
\end{eqnarray}
この動画を見る 

山形(医他)4次関数と接線 積分 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#指数関数と対数関数#指数関数#対数関数#微分とその応用#接線と法線・平均値の定理#学校別大学入試過去問解説(数学)#数学(高校生)#山形大学#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
'89山形大学過去問題
$f(x)=x^4-6a^2x^2+5a^4$ (a>0)
(a,0)における接線l。
f(x)とlとで囲まれる面積
この動画を見る 

福田の数学〜青山学院大学2021年理工学部第5問〜絶対値の付いた関数と面積の最大最小

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{5}} tを0 \leqq t \leqq \frac{\pi}{2}を満たす定数とする。関数\\
f(x)=|\sin x-\sin t|  (0 \leqq x \leqq \pi)\\
について、以下の問いに答えよ。\\
(1)t=\frac{\pi}{6}のときy=f(x) (0 \leqq x \leqq \pi)のグラフを描け。\\
\\
(2)y=f(x) (0 \leqq x \leqq \pi)のグラフとx軸、y軸および直線x=\pi\\
で囲まれた図形の面積をSとする。Sをtを用いて表せ。\\
\\
(3)tが\leqq t \leqq \frac{\pi}{2}の範囲を動くときのSの最大値と最小値を求めよ。
\end{eqnarray}

2021青山学院大学理工学部過去問
この動画を見る 
PAGE TOP