開成高校 整数問題 最大公約数・最小公倍数 - 質問解決D.B.(データベース)

開成高校 整数問題 最大公約数・最小公倍数

問題文全文(内容文):
$a,b$は自然数$(a \lt b)$
最大公約数を$g(\neq 1)$
最小公倍数を$l$
$a^2+b^2+g^2+l^2=1300$
$a,b$を求めよ

出典:開成高等学校 過去問
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)#開成高等学校
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b$は自然数$(a \lt b)$
最大公約数を$g(\neq 1)$
最小公倍数を$l$
$a^2+b^2+g^2+l^2=1300$
$a,b$を求めよ

出典:開成高等学校 過去問
投稿日:2019.04.21

<関連動画>

和と積が等しくなるような自然数の組?シンプルだけど難しい!どう解く?

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
相違なるn個の自然数の和と積が等しいとき、nの値とそれらn個の自然数の組をすべて求めよ。ただし、n≧2とする。
この動画を見る 

【数学オリンピックに挑戦】下3桁じゃなく上3桁!?【数学】

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学オリンピック#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
6桁の平方数の上3桁として考えられるものは全部でいくつあるか。

数学オリンピック過去問
この動画を見る 

福田のおもしろ数学423〜9999を連続する整数の平方で作る方法

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$2025^2+2026^2+2027^2+\cdots + n^2$

$n\gt 2025$を満たす自然数$n$で

上の式の「$+$」をいくつか「$-$」に置き換えることで

式の値を$9999$にできるものが存在することを

示して下さい。
   
この動画を見る 

整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ n^2+3,n^2+7,n^2+13,n^2+19$のすべてが素数となる整数nをすべて求めよ.
この動画を見る 

スタディーチューブ 企画「チャレンジチューブVol.5」

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)
$a^2+2b^2=7c^2$を満たす整数$(a,b,c)$の組をすべて求めよ

(2)
$a^2+2b^2=11c^2$を満たす全て2以上の自然数$(a,b,c)$
この動画を見る 
PAGE TOP