一橋大 確率のふりをした整数問題 - 質問解決D.B.(データベース)

一橋大 確率のふりをした整数問題

問題文全文(内容文):
赤玉x個、白玉x個の中から2個取り出す。
同じ色の玉が出る確率と異なる色の玉が出る確率が等しい(x,y)の組をすべて求めよ。

一橋大学過去問
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
赤玉x個、白玉x個の中から2個取り出す。
同じ色の玉が出る確率と異なる色の玉が出る確率が等しい(x,y)の組をすべて求めよ。

一橋大学過去問
投稿日:2023.12.25

<関連動画>

【高校数学】条件付き確率例題~標準問題解いてこ~ 2-8.5【数学A】

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
1つのつぼに赤玉と白玉が合計10個入っている。
このつぼから1個の玉を取り出し、それをつぼへ戻さずにまた1個の玉を取り出す。
このとき、取り出される2個の玉がともに赤玉である確率は$\displaystyle \frac{7}{15}$あるという。
このつぼに初め赤玉は何個入っているか。

-----------------

2⃣
20本のくじの中に当たりが5本ある。
このくじから1本ずつ順に、引いたくじはもとに戻さずに2本を引いたら、2本の中に
当たりくじがあることがわかった。
このとき、1本目のくじが当たりくじである確率を求めよ。
この動画を見る 

福田の数学〜中央大学2023年経済学部第2問〜確率漸化式

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数列#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 正の整数$a$を入力すると0以上$a$以下の整数のどれか1つを等しい確率で出力する装置がある。この装置に$a$=10を入力する操作を$n$回繰り返す。出力された$n$個の整数の和が偶数となる確率を$p_n$、奇数となる確率を$q_n$とするとき、以下の問いに答えよ。
(1)$p_1$, $q_1$を求めよ。
(2)$p_{n+1}$を$p_n$, $q_n$を用いて表せ。
(3)$p_n$を$n$の式で表せ。
この動画を見る 

【数学】確率をイメージ・原理から詳しく!!並び替えの有無の判断基準は?

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学】確率をイメージ・原理から詳しく解説する動画です
この動画を見る 

福田の数学〜東京科学大学(旧・東京工業大学)2025理系第3問〜確率漸化式と無限級数の和

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{3}$

$0\lt p\lt 1$とする。

表が出る確率が$p$、裏が出る確率が$1-p$である

$1$枚のコインを使って次のゲームを行う。

・ゲームの開始時点で点数は$0$点

・コインを投げ続け、表が出るごとに$1$点加算し、
 裏が出たときは点数はそのまま

・$2$回続けて裏が出たらゲームは終了。

$0$以上の整数$n$に対し、ゲームが終わったときに

$n$点となっている確率を$Q_n$とする。

(1)$Q_1,Q_2$を$p$を用いて表せ。

(2)$Q_2$を$n$と$p$を用いて表せ。

(3)$0\lt x\lt 1$を満たす実数$x$に対して次式が

成り立つことを示せ。

$\dfrac{1}{(1-x)^2}=\displaystyle \sum_{k=0}^{\infty}(n+1)x^n$

必要ならば$0\lt x \lt 1$のとき

$\displaystyle \lim_{n\to\infty} nx^n=0$であることを

証明なしで使ってもよい。

(4)無限級数$\displaystyle \sum_{n=0}^{\infty} nQn$を$p$を用いて表せ。

$2025$年東京科学大学(旧・東京工業大学)
理系過去問題
この動画を見る 

18東京都教員採用試験(数学:場合の数、数列)

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数列#数列とその和(等差・等比・階差・Σ)#その他#数学(高校生)#数B#教員採用試験
指導講師: ますただ
問題文全文(内容文):
1⃣-(2)
平面上の10コの円は、任意の2コの円も異なる2点で交わり、3コの円は1点で交わらないとき交点の総数を求めよ。
この動画を見る 
PAGE TOP