【数A】整数の性質:aを自然数とする。a+2は3の倍数であり、a+4は7の倍数であるとき、a+11は21の倍数であることを証明しましょう。 - 質問解決D.B.(データベース)

【数A】整数の性質:aを自然数とする。a+2は3の倍数であり、a+4は7の倍数であるとき、a+11は21の倍数であることを証明しましょう。

問題文全文(内容文):
aを自然数とする。a+2は3の倍数であり、a+4は7の倍数であるとき、a+11は21の倍数であることを証明しなさい。
チャプター:

0:00 オープニング
0:10 STEP1 文字で表す
1:08 STEP2 強引に計算
2:37 STEP3 締め

単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
教材: #高校ゼミスタンダード#高校ゼミスタンダード数A#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
aを自然数とする。a+2は3の倍数であり、a+4は7の倍数であるとき、a+11は21の倍数であることを証明しなさい。
投稿日:2020.06.16

<関連動画>

2020問題 整数 合同式

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
20202n1+624n1は11の倍数であることを示せ
この動画を見る 

東大の整数問題【数学 入試問題】【東京大学】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
3以上9999以下の奇数aで、a2a10000で割り切れるものをすべて求めよ。

東大過去問
この動画を見る 

関西大 漸化式 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#数列#漸化式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
関西大学過去問題
n自然数
a1=3an+1=2ann2+n
anをnで表せ

立教大学過去問題
2181を素因数分解
この動画を見る 

合同式の基本 灘中

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
各位の数が全て異なる7桁の11の倍数で最大なものを求めよ.

2011灘中(改)過去問
この動画を見る 

自作 整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
13n=k2+672
自然数(k,n)をすべて求めよ.
この動画を見る 
PAGE TOP preload imagepreload image