筑波大 4次方程式 - 質問解決D.B.(データベース)

筑波大 4次方程式

問題文全文(内容文):
2006年 国立大学法人筑波大学 過去問

$f(x)=x^4+2x^2-4x+8$
$(x^2+t)^2-f(x)=(px+q)^2$
を満たす整数$p,q,t$
$f(x)=0$を解け

単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2006年 国立大学法人筑波大学 過去問

$f(x)=x^4+2x^2-4x+8$
$(x^2+t)^2-f(x)=(px+q)^2$
を満たす整数$p,q,t$
$f(x)=0$を解け

投稿日:2023.08.07

<関連動画>

久留米大(医)4次方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#数学(高校生)#久留米大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x=1+\sqrt{3}c$が解である$x^4+ax^3+ax^2+(6-a)x+b=0$の
実数$a,b$を求めよ.

久留米大(医)過去問
この動画を見る 

福島大 複素数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#福島大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$z \neq 1,z^7-1=0$
証明せよ。
(1)
$w=z+\displaystyle \frac{1}{z}$とすると、$w^3+w^2-2w-1=0$

(2)
$a=\cos \displaystyle \frac{2}{7}\pi$とすると、$8a^3+4a^2-4a-1=0$

出典:2005年福島大学 過去問
この動画を見る 

長崎大 3乗根 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#整数の性質#複素数#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#長崎大学#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
長崎大学過去問題
(1)$x^3=1$を解け
(2)$α=m+\sqrt7ni$とすると、$α^3=225+2\sqrt7i$が成り立つ。整数m,nを求めよ。
(3)$β^3=225+2\sqrt7i$を満たす複素数βをすべて求めよ。
この動画を見る 

早稲田大(商)複素数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=(x^2+x+2)^{99}$
$=a_0+a_1x+a_2x^2+a_3x^3+…+a_{198}x^{198}$
$x^2+x+1=0$の1つの解を$\omega$とする

(2)
$f(\omega)$の値を求めよ

(2)
$S=\displaystyle \sum_{k=0}^{66} a_{3k}=a_0+a_3+a_6+…+a_{198}$

出典:1999年早稲田大学 商学部 過去問
この動画を見る 

指数方程式 (数II)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{8^x+27^x}{12^x+18^x} = \frac{7}{6}$
この動画を見る 
PAGE TOP