福田のおもしろ数学370〜フェルマーの小定理の証明 - 質問解決D.B.(データベース)

福田のおもしろ数学370〜フェルマーの小定理の証明

問題文全文(内容文):
フェルマーの小定理
素数$p$と整数$a$が互いに素のとき
$a^{p-1}\equiv1~~({\rm mod} ~p)$であることを証明せよ。
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
フェルマーの小定理
素数$p$と整数$a$が互いに素のとき
$a^{p-1}\equiv1~~({\rm mod} ~p)$であることを証明せよ。
投稿日:2025.01.06

<関連動画>

福田のおもしろ数学052〜余りの問題はこれができなきゃダメ〜余りを求める

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$1111^{ 2018 }$ を 11111 で割った余りを求めてください。
この動画を見る 

旭川医科大 整数

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
p^3-q^3-27r^3-9pqr=0 \\
p^2-10q-30r=11
\end{array}
\right.
\end{eqnarray}$
を満たす自然数$(p,q,r)$の組をすべて求めよ.

2015旭川医科大過去問
この動画を見る 

合同式の基本

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
m,nを自然数とする.
$ n^2-m!=2001 $を満たす(m,n)をすべて求めよ.
この動画を見る 

モスクワ数学オリンピック 整数

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n・2^n+1$が3の倍数となる自然数$n$を求めよ.

数学オリンピックモスクワ過去問
この動画を見る 

複号任意

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$73=m^2+n^2$となる整数m,nの組をすべて求めよ
この動画を見る 
PAGE TOP