福田の一夜漬け数学〜数学II 図形と方程式〜軌跡(9) 対称式の問題(その1)、高校2年生 - 質問解決D.B.(データベース)

福田の一夜漬け数学〜数学II 図形と方程式〜軌跡(9) 対称式の問題(その1)、高校2年生

問題文全文(内容文):
${\Large\boxed{1}}$ 実数$x,y$が$x^2+y^2 \leqq 8$ を満たしながら変化するとき
(1)点$P(x+y,xy)$の存在範囲を図示せよ。
(2)$x+y+xy$の最大値、最小値を求めよ。
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 実数$x,y$が$x^2+y^2 \leqq 8$ を満たしながら変化するとき
(1)点$P(x+y,xy)$の存在範囲を図示せよ。
(2)$x+y+xy$の最大値、最小値を求めよ。
投稿日:2018.09.06

<関連動画>

福田の数学〜東北大学2024年理系第2問〜対数不等式の証明と自然数解

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{2}}$ 以下の問いに答えよ。
(1)$t$を$t$>1 を満たす実数とする。正の実数$x$が2つの条件
(a)$x$>$\displaystyle\frac{1}{\sqrt t-1}$
(b)$x$≧$2\log_tx$
をともに満たすとする。このとき、不等式
$x$+1>$2\log_t(x+1)$
を示せ。
(2)$n$≦$2\log_2n$ を満たす正の整数$n$をすべて求めよ。
この動画を見る 

京都大 三次方程式の解

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$k\gt 0$であるとする.
$x(x+3)(x-3)+3k(x+1)(x-1)=0$が3つ実数解をもつことを示せ.

1967京都大(文理共通)過去問
この動画を見る 

言語学オタクに数学を教えるよ!その2 ネイピア数とは

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
ネイピア数に関して解説していきます.
この動画を見る 

整式の剰余 すっきり解こう

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^{2021}$を$x^4+x^2+1$で割った余りを求めよ.
この動画を見る 

極限

アイキャッチ画像
単元: #微分法と積分法#平均変化率・極限・導関数
指導講師: 数学を数楽に
この動画を見る 
PAGE TOP