北海道大 微分積分 - 質問解決D.B.(データベース)

北海道大 微分積分

問題文全文(内容文):
$f(x)=x^4+6x^3-24x^2$の変曲点を$P(\alpha,f(\alpha)),Q(\beta,f(\beta))とする.(\alpha \gt \beta)$
$f(x)$の$P$における接線と$f(x)$で囲まれる面積を求めよ.

2021北海道大過去問
単元: #数Ⅱ#微分法と積分法#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^4+6x^3-24x^2$の変曲点を$P(\alpha,f(\alpha)),Q(\beta,f(\beta))とする.(\alpha \gt \beta)$
$f(x)$の$P$における接線と$f(x)$で囲まれる面積を求めよ.

2021北海道大過去問
投稿日:2021.03.19

<関連動画>

3通りで証明できる!?おもしろい解法を紹介【数学 三角関数】

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$tan10°=tan20°・tan30°・tan40°$を示せ。
この動画を見る 

数Ⅱ微分の良問です【大阪大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$点(0,1)を通り曲線$y=x^3-ax^2$に接する直線がちょうど2本存在するとき,実数$a$の値と2本の接線の方程式を求めよ。

大阪大過去問
この動画を見る 

気付けば一瞬系 指数

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$2^a = 3,3^b=4,4^c=8$のとき$2abc=?$
この動画を見る 

【数Ⅱ】虚数を解に持つ2次方程式【最小多項式・解と係数の関係を使う】

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
$ 2次方程式x^2+ax+b=0の解の1つが3+iであるとき,
実数の定数a,bの値を求めよ.$
この動画を見る 

福田の入試問題解説〜慶應義塾大学2022年理工学部第2問〜連立不等式の表す領域の面積と回転体の体積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$r$を正の実数とし、円$C_1:(x-2)^2+y^2=r^2$、楕円$C_2:\frac{x^2}{9}+y^2=1$を考える。
(1)円$C_1$と楕円$C_2$の共有点が存在するようなrの値の範囲は$\boxed{\ \ カ\ \ } \leqq r \leqq \boxed{\ \ キ\ \ }$である。
(2)$r=1$のとき、$C_1$と$C_2$の共有点の座標を全て求めると$\boxed{\ \ ク\ \ }$である。
これらの共有点のうちy座標が正となる点のy座標を$y_0$とする。連立不等式

$\left\{\begin{array}{1}
(x-2)^2+y^2 \leqq 1\\
0 \leqq y \leqq y_0\\
\end{array}\right.$
の表す領域の面積は$\boxed{\ \ ケ\ \ }$である。

(3)連立不等式
$\left\{\begin{array}{1}
(x-2)^2+y^2 \leqq 1\\
\displaystyle\frac{x^2}{9}+y^2 \geqq 1\\
y \geqq 0\\
\end{array}\right.$
の表す領域をDとする。Dをy軸のまわりに
1回転させてできる立体の体積は$\boxed{\ \ コ\ \ }$である。

2022慶應義塾大学理工学部過去問
この動画を見る 
PAGE TOP