室蘭工業大 漸化式 - 質問解決D.B.(データベース)

室蘭工業大 漸化式

問題文全文(内容文):
$a_1=2,b_1=1$
$a_{n+1}=\dfrac{7}{3}a_n+\dfrac{4}{3}b_n+n$
$b_{n+1}=\dfrac{2}{3}a_n+\dfrac{5}{3}b_n-n$

2021室蘭工大過去問
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=2,b_1=1$
$a_{n+1}=\dfrac{7}{3}a_n+\dfrac{4}{3}b_n+n$
$b_{n+1}=\dfrac{2}{3}a_n+\dfrac{5}{3}b_n-n$

2021室蘭工大過去問
投稿日:2021.07.27

<関連動画>

福田の数学〜東京大学2023年理系第1問〜定積分と不等式

アイキャッチ画像
単元: #大学入試過去問(数学)#漸化式#微分とその応用#積分とその応用#微分法#定積分#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ [1]正の整数kに対し、$A_k=\displaystyle\int_{\sqrt{k\pi}}^{\sqrt{(k+1)\pi}}|\sin(x^2)|dx$ とおく。次の不等式が成り立つことを示せ。
$\displaystyle\frac{1}{\sqrt{(k+1)\pi}}$≦$A_k$≦$\displaystyle\frac{1}{\sqrt{k\pi}}$
[2]正の整数nに対し、$B_n$=$\displaystyle\frac{1}{\sqrt n}\int_{\sqrt{n\pi}}^{\sqrt{2n\pi}}|\sin(x^2)|dx$ とおく。
極限$\displaystyle\lim_{n \to \infty}B_n$ を求めよ。

2023東京大学理系過去問
この動画を見る 

【数学B/数列】(等差数列)×(等比数列)型の数列の和

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の和$S$を求めよ。
$S=1・1+2・3+3・3^2+4・3^3+$
$…+n・3^{n-1}$
この動画を見る 

福田のおもしろ数学414〜3辺の長さと内接円の直径で等差数列ができる三角形は直角三角形であることの証明

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

ある三角形の$3$辺の長さとその内接円の直径を

ある順序で並べると等差数列になるという。

この三角形が直角三角形であることを証明せよ。
   
この動画を見る 

【高校数学】 数B-85 群数列③

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数列$\dfrac{1}{1},\dfrac{1}{2},\dfrac{3}{2},\dfrac{1}{3},\dfrac{3}{3},\dfrac{5}{3},\dfrac{1}{4},\dfrac{3}{4},\dfrac{5}{4},\dfrac{7}{4},\dfrac{1}{5},\dfrac{3}{5},・・・$
について次の問いに答えよう.

①$\dfrac{5}{9}$は第何項か求めよう.

②この数列の第200項を求めよう.
この動画を見る 

福田の数学〜東北大学2025理系第2問〜漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

正の実数からなる$2$つの数列$\{x_n\},\{y_n\}$を

次のように定める。

$x_1=2,y_1=\dfrac{1}{2},x_{n+1}=(y_n)^5・(y_n)^2,$

$ \hspace{ 80pt } y_{n+1}=x_n・(y_n)^6$

このとき、以下の問いに答えよ。

(1)$k$を実数とする。

$a_n=\log_2 x_n,b_n=\log_2 y_n$とおく。

このとき、$\{a_n+kb_n\}$が等位数列になるような

$k$の値をすべて求めよ。

(2)数列$\{x_n\}$の一般項を求めよ。

$2025$年東北大学理系過去問題
この動画を見る 
PAGE TOP