三重大医)整数 高校数学 Japanese university entrance exam questions - 質問解決D.B.(データベース)

三重大医)整数 高校数学 Japanese university entrance exam questions

問題文全文(内容文):
三重大学
a,b,c,d素数
$f(x)=ax^3+bx^2+cx+d$
f(-1),f(0),f(1)はいずれも3で割り切れないとき、f(x)=0は整数の解をもたないことを示せ。
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)#三重大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
三重大学
a,b,c,d素数
$f(x)=ax^3+bx^2+cx+d$
f(-1),f(0),f(1)はいずれも3で割り切れないとき、f(x)=0は整数の解をもたないことを示せ。
投稿日:2018.07.23

<関連動画>

【理数個別の過去問解説】2021年度東京大学 数学 理科・文科第4問(3)解説

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
東京大学 2021年理科・文科第4問(3)
以下の問いに答えよ。
(1)正の奇数K,Lと正の整数A,BがKA=LBを満たしているとする。Kを4で割った余りがLを4で割った余りと等しいならば、Aを4で割った余りはBを4で割った余りと等しいことを示せ。
(2)正の整数a,bがa>bを満たしているとする。このとき、$A=_{4a+1}C_{4b+1},B=aCb$に対してKA=LBとなるような正の奇数K,Lが存在することを示せ。
(3)a,bは(2)の通りとし、さらにa-bが2で割り切れるとする。$_{4a+1}C_{4b+1}wp4$で割った余りは${}_a\mathrm{C}_b$を4で割った余りと等しいことを示せ。
(4)2021C37を4で割った余りを求めよ。
この動画を見る 

16京都府教員採用試験(数学:5番 整数問題)

アイキャッチ画像
単元: #数Ⅰ#数A#数と式#集合と命題(集合・命題と条件・背理法)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
5⃣ $\frac{1}{2015} , \frac{2}{2015} , \cdots , \frac{2014}{2015},\frac{2015}{2015}$のうち既約分数の個数を求めよ。
この動画を見る 

チャレンジチューブ 解答編

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)
$a^2+2b^2=7c^2$を満たす整数$(a,b,c)$を全て求めよ

(2)
$x^2+2y^2=11z^2$を満たすすべて2以上の自然数$x,y,z$を1組例示せよ
※追加$x,y,z$互いに素
この動画を見る 

九州大の過去問をパクって問題作ってみた

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a^3+3b^3=7c^3$を満たす整数$(a,b,c)$の組をすべて求めよ.
この動画を見る 

東工大 整数問題 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
自然数$a,b,c$が$3a=b^3,5a=c^2$を満たす。
$d^6$が$a$を割り切るような自然数$d$は$d=1$のみ。
(1)
$a$は3と5で割り切れることを示せ

(2)
$a$の素因数は3と5以外にないことを示せ

(3)
$a$を求めよ

出典:2006年東京工業大学 過去問
この動画を見る 
PAGE TOP