問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ \left\{a_n\right\}をa_1=-15および\\
a_{n+1}=a_n+\frac{n}{5}-2 (n=1,2,3,\ldots)\\
を満たす数列とする。\\
(1)a_nが最小となる自然数nを全て求めよ。\\
(2)\left\{a_n\right\}の一般項を求めよ。\\
(3)\sum_{k=1}^na_kが最小となる自然数nを全て求めよ。
\end{eqnarray}
2022北海道大学文系過去問
\begin{eqnarray}
{\Large\boxed{2}}\ \left\{a_n\right\}をa_1=-15および\\
a_{n+1}=a_n+\frac{n}{5}-2 (n=1,2,3,\ldots)\\
を満たす数列とする。\\
(1)a_nが最小となる自然数nを全て求めよ。\\
(2)\left\{a_n\right\}の一般項を求めよ。\\
(3)\sum_{k=1}^na_kが最小となる自然数nを全て求めよ。
\end{eqnarray}
2022北海道大学文系過去問
単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数B
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ \left\{a_n\right\}をa_1=-15および\\
a_{n+1}=a_n+\frac{n}{5}-2 (n=1,2,3,\ldots)\\
を満たす数列とする。\\
(1)a_nが最小となる自然数nを全て求めよ。\\
(2)\left\{a_n\right\}の一般項を求めよ。\\
(3)\sum_{k=1}^na_kが最小となる自然数nを全て求めよ。
\end{eqnarray}
2022北海道大学文系過去問
\begin{eqnarray}
{\Large\boxed{2}}\ \left\{a_n\right\}をa_1=-15および\\
a_{n+1}=a_n+\frac{n}{5}-2 (n=1,2,3,\ldots)\\
を満たす数列とする。\\
(1)a_nが最小となる自然数nを全て求めよ。\\
(2)\left\{a_n\right\}の一般項を求めよ。\\
(3)\sum_{k=1}^na_kが最小となる自然数nを全て求めよ。
\end{eqnarray}
2022北海道大学文系過去問
投稿日:2022.03.30