数学「大学入試良問集」【10−5③ 直線の通過領域】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【10−5③ 直線の通過領域】を宇宙一わかりやすく

問題文全文(内容文):
平面上の2点$P(t,0),Q(0,1)$に対して、$P$を通り、$PQ$に垂直な直線を$l$とする。
$t$が$-1 \leqq t \leqq 1$の範囲を動くとき、$l$が通る領域を求めて、平面上に図示せよ。
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#数学(高校生)#関西大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
平面上の2点$P(t,0),Q(0,1)$に対して、$P$を通り、$PQ$に垂直な直線を$l$とする。
$t$が$-1 \leqq t \leqq 1$の範囲を動くとき、$l$が通る領域を求めて、平面上に図示せよ。
投稿日:2021.04.22

<関連動画>

式の証明 山梨大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#山梨大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2019年 山梨大学 過去問

$\frac{a^3+a}{a+1}=\frac{b^3+b}{b+1}=\frac{c^3+c}{c+1}$
$a \neq b$、$b \neq c、c \neq a$のとき
a+b+c=0であることを証明せよ。
この動画を見る 

大学入試問題#558 東京帝国大学(1933) #方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \frac{\sqrt{ x+1 }+\sqrt{ x-1 }}{\sqrt{ x+1 }-\sqrt{ x-1 }}=\displaystyle \frac{4x-1}{2}$

出典:1933年東京帝国大学 入試問題
この動画を見る 

【高校数学】微分②~導関数~ 6-3【数学Ⅱ】

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
微分 導関数についての説明動画です
この動画を見る 

福田のおもしろ数学161〜複雑な指数方程式の解

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
方程式$(4+\sqrt{15})^x-2(4-\sqrt{15})^x$=1 を解け。
この動画を見る 

福田のわかった数学〜高校2年生091〜指数対数(4)指数関数の最大最小

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 指数対数(4) 指数関数の最大最小
最小値とそのときのxを求めよ。
(1)$y=2^{2+x}+2^{5-x}$ (2)$y=4^x-2^{x+2}$
(3)$y=4^x+4^{-x}-2^x-2^{-x}$     
この動画を見る 
PAGE TOP