【高校数学】三角関数⑨~今までの応用~ 4-11【数学Ⅱ】 - 質問解決D.B.(データベース)

【高校数学】三角関数⑨~今までの応用~ 4-11【数学Ⅱ】

問題文全文(内容文):
(1) 0≦θ<2πのとき、次の関数の最大値と最小値を求めよ。
  そのときのθの値を求めよ。
  y=cos²θ-4sinθ+2

(2) 0≦θ<2πのとき、次の方程式を満たすθの値を求めよ。
  2sin²θ-5cosθ+5=0
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1) 0≦θ<2πのとき、次の関数の最大値と最小値を求めよ。
  そのときのθの値を求めよ。
  y=cos²θ-4sinθ+2

(2) 0≦θ<2πのとき、次の方程式を満たすθの値を求めよ。
  2sin²θ-5cosθ+5=0
投稿日:2018.10.06

<関連動画>

【数学II】三角関数_これで共テ瞬殺!【三角関数のイメージ】【共通テスト】

アイキャッチ画像
単元: #三角関数#三角関数とグラフ#加法定理とその応用#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
(1)
$0^{ \circ } \lt \theta \lt 180^{ \circ }$
$\tan \theta =-2$
$\sin \theta,\cos \theta$は?

(2)
$0 \leqq \theta \lt 2 \pi$
$\cos \theta \lt \displaystyle \frac{\sqrt{ 3 }}{2}$を解け

(3)
$0 \lt \theta \leqq 2 \pi$
$\sin \theta \geqq \displaystyle \frac{1}{2}$を解け

(4)
$0 \leqq \theta \lt 2 \pi$
$\sin \theta + \sqrt{ 3 } \cos \theta =\sqrt{ 2 }$を解け

(5)
$0 \leqq x \leqq \pi$とする
$y=2 \sin 2x-2(\sin x- \cos x)+1$
のとり得る値の範囲は?

(6)
$f(x)=\sin x - \cos 2x$の
$0 \leqq x \leqq \pi$における
max、minを求めよ
この動画を見る 

福田のわかった数学〜高校2年生081〜三角関数(20)18°系の三角比(1)

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 三角関数(20) 18°系の三角比(1)
$\sin\frac{\pi}{10}$の値を求めよ。
この動画を見る 

福田の数学〜明治大学2021年理工学部第1問(2)〜三角関数の最大最小

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#加法定理とその応用#数学(高校生)#大学入試解答速報#数学#明治大学
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(2)座標平面上に2点$A(\frac{5}{8},0),\ B(0,\frac{3}{2})$をとる。Lは原点を通る直線で、Lが
x軸の正の方向となす角$\thetaは0 \leqq \theta \leqq \frac{\pi}{2}$の範囲にあるとする。ただし、角$\theta$の
符号は時計の針の回転と逆の向きを正の方向とする。点Aと直線Lとの距離を
$d_A$、点Bと直線Lの距離を$d_B$とおく。このとき、

$d_A+d_B=\frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }}\sin\theta+\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}\cos\theta$
である。$\theta$が$0 \leqq \theta \leqq \frac{\pi}{2}$の範囲を動くとき、
$d_A+d_B$の最大値は$\frac{\boxed{\ \ シス\ \ }}{\boxed{\ \ セ\ \ }}$であり、
最小値は$\frac{\boxed{\ \ ソ\ \ }}{\boxed{\ \ タ\ \ }}$である。

2021明治大学理工学部過去問
この動画を見る 

【高校数学】 数Ⅱ-103 三角関数を含む方程式・不等式⑤

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎$0 \leqq \theta \lt 2π$のとき、次の方程式を解こう。

①$2\cos^2 \theta-5\cos \theta -3=0$

②$2\cos^2 \theta-\sin \theta -1=0$

③$\sqrt{ 3 } \tan^2 \theta -2\tan \theta-\sqrt{ 3 }=0$
この動画を見る 

【数Ⅱ】三角関数:相加相乗その5

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
y軸上の2つの点、A(0,2)、B(0,8)とx軸上の点P(a,0)(a>0とする)について考える。このとき、∠APBを最大とするaの値を求めよ。
この動画を見る 
PAGE TOP