福田の数学〜早稲田大学2021年人間科学部第1問〜異なるペアになる確率 - 質問解決D.B.(データベース)

福田の数学〜早稲田大学2021年人間科学部第1問〜異なるペアになる確率

問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (1)8人のメンバーで、2人組(ペア)を4組作る方法はn通りある。nを100で割った商は\\
\boxed{\ \ ア\ \ }で、余りは\boxed{\ \ イ\ \ }である。\\
\\
(2)8人のメンバーで、2人組(ペア)を4組作って、ある作業に取り組んだ後、同じ8人で\\
次の作業に取り組むペアを作るために、くじ引きをした。このとき、8人全員が\\
くじ引き前と異なるメンバーとペアになる確率は\frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ エ\ \ }} である。\\
ただし、くじは公平でどの2人もペアになる確率は等しいものとする。
\end{eqnarray}

2021早稲田大学人間科学部過去問
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (1)8人のメンバーで、2人組(ペア)を4組作る方法はn通りある。nを100で割った商は\\
\boxed{\ \ ア\ \ }で、余りは\boxed{\ \ イ\ \ }である。\\
\\
(2)8人のメンバーで、2人組(ペア)を4組作って、ある作業に取り組んだ後、同じ8人で\\
次の作業に取り組むペアを作るために、くじ引きをした。このとき、8人全員が\\
くじ引き前と異なるメンバーとペアになる確率は\frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ エ\ \ }} である。\\
ただし、くじは公平でどの2人もペアになる確率は等しいものとする。
\end{eqnarray}

2021早稲田大学人間科学部過去問
投稿日:2021.06.14

<関連動画>

【数学A】確率③ これで最後の動画です(多分)

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学A】確率問題の解き方説明動画です
-----------------
動画内の図を参照し、以下の問に答えよ
Aから3個 Bから2個 同時に出す。
黒玉が3個の確率は?
この動画を見る 

福田の数学〜名古屋大学2022年理系第2問〜互いに素になるような確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ 1つのサイコロを3回投げる。1回目に出る目をa、2回目に出る目をb、\\
3回目に出る目をcとする。なおサイコロは1から6までの目が等しい確率で出るもの\\
とする。\\
(1)ab+2c \geqq abcとなる確率を求めよ。\\
(2)ab+2cと2abcが互いに素となる確率を求めよ。
\end{eqnarray}

2022名古屋大学理系過去問
この動画を見る 

福田の数学〜90%の人が間違う平均の計算〜慶應義塾大学2023年総合政策学部第3問〜確率漸化式と平均の計算

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
※図は動画内
あるすごろくのゲ ー ムでは、 1 枚のコインを投げてその表裏でコマを前に進め、10 マス目のゴ ー ルを目指すものとする。
コマは、最初、 1 マス目のスタ ー トの位置にあり、コインを投げて表であれば 2マスだけコマを前に進め、裏であれば 1 マスだけコマを前に進める。ただし、 9マス目で表が出たために 10 マス目を超えて前に進めなくてはならなくなった場合には、ゴ ー ルできずにそこでゲ ー ムは終了するものとする。また、コインの表と裏は等しい確率で出るものとする。このとき、ある 1 回のゲ ー ムの中でnマス目(n= 1 , 2 ,・・・,10)にコマが止まる確率を$p_n$とすると,
$p_1=1,p_2=\frac{1}{2},p_3=\dfrac{\fbox{ア}}{\fbox{イ}},p_4=\dfrac{\fbox{ウ}}{\fbox{エ}}$
である。
$p_n=\dfrac{\fbox{オ}}{\fbox{カ}}\dfrac{\fbox{キ}}{\fbox{ク}}(\dfrac{\fbox{ケ}}{\fbox{コ}})^n$
である。またコマがコールしたとき、スタートからゴールするまでにコインを投げた回数は平均$\dfrac{\fbox{サ}}{\fbox{シ}}$回である

2023慶應義塾大学総合政策学部過去問
この動画を見る 

福田の数学〜明治大学2022年全学部統一入試12AB第1問(3)〜隣り合わない重複順列

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(3)4個の文字$A,B,C,D$から重複を許して5個取り出して1列に並べる。
このとき、AとBが隣り合わず、CとDが隣り合わないような並べ方は$\boxed{\ \ シスセ\ \ }$通りある。

2022明治大学全統過去問
この動画を見る 

福田の数学〜九州大学2023年文系第4問PART2〜確率漸化式

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#確率#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ $w$を$x^3$=1 の虚数解のうち虚部が正であるものとする。さいころを繰り返し投げて、次の規則で4つの複素数0, 1, $w$, $w^2$を並べていくことにより、複素数の列$z_1$, $z_2$, $z_3$, ... を定める。
・$z_1$=0 とする。
・$z_k$まで定まった時、さいころを投げて、出た目を$t$とする。このとき$z_{k+1}$を以下のように定める。
・$z_k$=0 のとき、$z_{k+1}$=$w^t$ とする。
・$z_k$≠0, $t$=1, 2のとき、$z_{k+1}$=0 とする。
・$z_k$≠0, $t$=3のとき、$z_{k+1}$=$wz_k$ とする。
・$z_k$≠0, $t$=4のとき、$z_{k+1}$=$\bar{wz_k}$ とする。
・$z_k$≠0, $t$=5のとき、$z_{k+1}$=$z_k$ とする。
・$z_k$≠0, $t$=6のとき、$z_{k+1}$=$\bar{z_k}$ とする。
ここで複素数$z$に対し、$\bar{z}$は$z$と共役な複素数を表す。以下の問いに答えよ。
(1)$ω^2$=$\bar{ω}$であることを示せ。
(2)$z_n$=0となる確率を$n$の式で表せ。
(3)$z_3$=1, $z_3$=$ω$, $z_3$=$ω^2$となる確率をそれぞれ求めよ。
(4)$z_n$=1となる確率を$n$の式で表せ。

2023九州大学文系過去問
この動画を見る 
PAGE TOP