【数B・Ⅲ】漸化式と極限:連立漸化式:数列{x[n]},{y[n]}をx[1]=y[1]=1, x[n+1]=(2/3)x[n]+(1/6)y[n], y[n+1]=(1/3)x[n]+(5/6)y… - 質問解決D.B.(データベース)

【数B・Ⅲ】漸化式と極限:連立漸化式:数列{x[n]},{y[n]}をx[1]=y[1]=1, x[n+1]=(2/3)x[n]+(1/6)y[n], y[n+1]=(1/3)x[n]+(5/6)y…

問題文全文(内容文):
数列{$x_n$},{$y_n$}を$x_1=y_1=1, x_{n+1}=\dfrac{2}{3}x_n+\dfrac{1}{6}y_n, y_{n+1}=\dfrac{1}{3}x_n+\dfrac{5}{6}y_n$で定めるとき、
(1)$x_{n+1}+αy_{n+1}=\beta(x_n+αy_n)$を満たす$\alpha,\beta$の組を2組求めよう。
(2)数列{$x_n$},{$y_n$}の一般項を求めよう。
(3)数列{$x_n$},{$y_n$}の極限を求めよう。
チャプター:

0:00 オープニング
0:05 問題文
0:20 問題解説(1):連立漸化式の式変形の基本
1:55 問題解説(2):漸化式を解く
4:09 問題解説(3):n→∞
4:44 今回のポイント
4:53 名言

単元: #数列#漸化式#関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
数列{$x_n$},{$y_n$}を$x_1=y_1=1, x_{n+1}=\dfrac{2}{3}x_n+\dfrac{1}{6}y_n, y_{n+1}=\dfrac{1}{3}x_n+\dfrac{5}{6}y_n$で定めるとき、
(1)$x_{n+1}+αy_{n+1}=\beta(x_n+αy_n)$を満たす$\alpha,\beta$の組を2組求めよう。
(2)数列{$x_n$},{$y_n$}の一般項を求めよう。
(3)数列{$x_n$},{$y_n$}の極限を求めよう。
投稿日:2021.04.20

<関連動画>

大阪市立大 漸化式 Japanese university entrance exam questions

アイキャッチ画像
単元: #数列#漸化式#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
大阪市立大学過去問題
n自然数
$a_1 = 1 \quad a_{n+1}>a_n$
$(a_{n+1}-a_n)^2= a_{n+1}+a_n$
この動画を見る 

福田のおもしろ数学538〜数列の一般項を1つの式で表す

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

数列

$1,1,2,2,3,3,4,4,\cdots $

の一般項を$1$つの式で表せ。
    
この動画を見る 

【高校数学】 数B-79 数列の和と一般項②

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
初項から第$n$項までの和$S_n$が
次の式で表される数列$\{a_n\}$の一般項を求めよう.

①$S_n=n^2+2n+2$

②$S_n=a_{n}+(n-1)^2$
この動画を見る 

数列 By Picmin3daisukiさん

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: ますただ
問題文全文(内容文):
$a_1=\sin^22$
$a_{n+1}=4a_n(1-a_n)$を満たす一般項$a_n$を求めよ。
この動画を見る 

15和歌山県教員採用試験(数学:5番 行列)

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#その他#数学(高校生)#数B#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{5}$

$A=\begin{pmatrix}
a & b \\
c & d
\end{pmatrix}$

$A^2-3A+2E=\theta$をみたすとき,
$(a+d,ad-bc)$を全て求めよ.
この動画を見る 
PAGE TOP