大学入試問題#652「パット見余裕!」 慶應大学医学部(2001) 整数問題 - 質問解決D.B.(データベース)

大学入試問題#652「パット見余裕!」  慶應大学医学部(2001) 整数問題

問題文全文(内容文):
$\sqrt{ n^2+n+34 }$が整数となるような自然数$n$をすべて求めよ

出典:2001年慶應義塾大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\sqrt{ n^2+n+34 }$が整数となるような自然数$n$をすべて求めよ

出典:2001年慶應義塾大学 入試問題
投稿日:2023.11.18

<関連動画>

大学入試問題#511「数検1級の1次に類題が出てるはず」 浜松医科大学(2015) #区分求積法

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } (\displaystyle \frac{(3n+1)(3n+2)・・・(3n+n)}{(n+1)(n+2)・・・(n+n)})^{\frac{1}{n}}$

出典:2015年浜松医科大学 入試問題
この動画を見る 

福田の数学〜九州大学2022年理系第5問の背景を考える〜内サイクロイド曲線(ハイポサイクロイド、アステロイド)の媒介変数表示

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上の曲線#ベクトルと平面図形、ベクトル方程式#微分とその応用#微分法#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#数学(高校生)#九州大学#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
xy平面上の曲線Cを、媒介変数tを用いて次のように定める。
$x=5\cos t+\cos5t, y=5\sin t-\sin5t (-\pi \leqq t \lt \pi)$
以下の問いに答えよ。
(1)区間$0 \lt t \lt \frac{\pi}{6}$において、$\frac{dx}{dt} \lt 0, \frac{dy}{dx} \lt 0$であることを示せ。
(2)曲線Cの$0 \leqq t \leqq \frac{\pi}{6}$の部分、x軸、直線$y=\frac{1}{\sqrt3}x$で囲まれた
図形の面積を求めよ。
(3)曲線Cはx軸に関して対称であることを示せ。また、C上の点を
原点を中心として反時計回りに$\frac{\pi}{3}$だけ回転させた点はC上
にあることを示せ。
(4)曲線Cの概形を図示せよ。

2022九州大学理系過去問
この動画を見る 

和歌山大 4次関数と接線 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#岡山大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
94年 和歌山大学過去問
$f(x)=x^4+ax^3+bx^2+cx+d$と$y=mx$は2点P、Qで接している。
P、Qの$x$座標はそれぞれ、-1、2で$f(x)$は$x=1$で極大値をとる。

(1)$f(x)$と$y=mx$で囲まれる面積を求めよ

(2)$m$の値と極大値を求めよ
この動画を見る 

福田の数学〜京都大学2022年理系第3問〜3つの数の最大公約数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
nを自然数とする。3つの整数$n^2+2,n^4+2,n^6+2$の最大公約数$A_n$を求めよ。

2022京都大学理系過去問
この動画を見る 

富山大(医)整数問題基本

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#富山大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)$4^{3n-2}-1$を9で割ると3余ることを示せ.
(2)$n^3+3n^2+2n-3$は5の倍数でないことを示せ.

富山大(医)過去問
この動画を見る 
PAGE TOP