福田の数学〜早稲田大学2022年商学部第2問〜ベクトルに序列を定義して数える - 質問解決D.B.(データベース)

福田の数学〜早稲田大学2022年商学部第2問〜ベクトルに序列を定義して数える

問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{2}}\ 空間ベクトルに対し、次の関係を定める。\hspace{152pt}\\
\overrightarrow{ a }=(a_1,a_2,a_3)と\overrightarrow{ b }=(b_1,b_2,b_3)が、次の(\textrm{i}),(\textrm{ii}),(\textrm{iii})のいずれかを\\
満たしているとき\overrightarrow{ a }は\overrightarrow{ b }より前であるといい、
\overrightarrow{ a }≺ \overrightarrow{ b }と表す。\\
(\textrm{i})a_1 \lt b_1\ \ \ (\textrm{ii})a_1=b_1かつa_2 \lt b_2\ \ \ (\textrm{iii})a_1=b_1かつa_2=b_2かつa_3 \lt b_3\ \ \ \\
\\
空間ベクトルの集合P=\left\{(x,y,z) | \ x,y,zは0以上7以下の整数\right\}の要素を\\
前から順に\overrightarrow{ p_1 },\overrightarrow{ p_2 },\ldots,\overrightarrow{ p_m }とする。ここで、mはPに含まれる要素の総数を表す。\\
つまり、P=\left\{\overrightarrow{ p_1 },\overrightarrow{ p_2 },\ldots,\overrightarrow{ p_m }\right\}であり、\\
\overrightarrow{ p_n }≺ \overrightarrow{ p_{n+1} }(n=1,2,\ldots,m-1)\\
を満たしている。次の各設問に答えよ。\\
(1)\ \overrightarrow{ p_{67} }を求めよ。\\
(2)集合\left\{n\ \ \ | \ \overrightarrow{ p_n }∟(1,0,-2)\right\}の要素のうちで最大のものを求めよ。
\end{eqnarray}

2022早稲田大学商学部過去問
単元: #数A#大学入試過去問(数学)#場合の数と確率#空間ベクトル#場合の数#空間ベクトル#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{2}}\ 空間ベクトルに対し、次の関係を定める。\hspace{152pt}\\
\overrightarrow{ a }=(a_1,a_2,a_3)と\overrightarrow{ b }=(b_1,b_2,b_3)が、次の(\textrm{i}),(\textrm{ii}),(\textrm{iii})のいずれかを\\
満たしているとき\overrightarrow{ a }は\overrightarrow{ b }より前であるといい、
\overrightarrow{ a }≺ \overrightarrow{ b }と表す。\\
(\textrm{i})a_1 \lt b_1\ \ \ (\textrm{ii})a_1=b_1かつa_2 \lt b_2\ \ \ (\textrm{iii})a_1=b_1かつa_2=b_2かつa_3 \lt b_3\ \ \ \\
\\
空間ベクトルの集合P=\left\{(x,y,z) | \ x,y,zは0以上7以下の整数\right\}の要素を\\
前から順に\overrightarrow{ p_1 },\overrightarrow{ p_2 },\ldots,\overrightarrow{ p_m }とする。ここで、mはPに含まれる要素の総数を表す。\\
つまり、P=\left\{\overrightarrow{ p_1 },\overrightarrow{ p_2 },\ldots,\overrightarrow{ p_m }\right\}であり、\\
\overrightarrow{ p_n }≺ \overrightarrow{ p_{n+1} }(n=1,2,\ldots,m-1)\\
を満たしている。次の各設問に答えよ。\\
(1)\ \overrightarrow{ p_{67} }を求めよ。\\
(2)集合\left\{n\ \ \ | \ \overrightarrow{ p_n }∟(1,0,-2)\right\}の要素のうちで最大のものを求めよ。
\end{eqnarray}

2022早稲田大学商学部過去問
投稿日:2022.08.19

<関連動画>

条件付き確率

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)
どの人についても、カードの数字が異なる確率は?

(2)
カードの数字が異なる人がいた場合に、カードの数字が同じ人がいる確率は?
この動画を見る 

福田のわかった数学〜高校1年生081〜確率(1)くじ引き(1)

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{A} 確率(1) くじ引き(1)\\
10本中3本当たりのくじから\\
(1)同時に3本のくじを引いたとき、1本だけ当たる確率を求めよ。\\
(2)A,B,Cの3人が順に1本ずつ引いたとき(元に戻さない)、\\
1人だけが当たる確率を求めよ。
\end{eqnarray}
この動画を見る 

確率×整数問題!さいころの目の最小公倍数や最大公約数【数学 入試問題】【北海道大学】

アイキャッチ画像
単元: #数Ⅰ#数A#場合の数と確率#場合の数#確率#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$n$を2以上の自然数とする。1個のさいころを続けて$n$回投げる試行を行い,出た目を順に$X_1,X_2,・・・,X_n$とする。

(1)$X_1,X_2,・・・,X_n$の最大公約数が3となる確率を$n$の式で表せ。

北海道大過去問
この動画を見る 

埼玉医科大 確率

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$A,B$交互にサイコロを振り,直前と同じ目が出たら負け,$A$から始めたとき,$B$の負ける確率を求めよ.

2021埼玉医科大過去問
この動画を見る 

なんで確率が上がるの?

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
モンティホール問題について
この動画を見る 
PAGE TOP