数学「大学入試良問集」【13−2 部分分数分解による和】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【13−2 部分分数分解による和】を宇宙一わかりやすく

問題文全文(内容文):
数列$2,6,12,20,30,42,・・・$について、$n$を自然数として以下の問いに答えよ。
(1)
第$n$項$a_n$と、初項から第$n$項までの和$S_n$を求めよ。

(2)
$\displaystyle \frac{1}{a_1}+\displaystyle \frac{1}{a_2}+\displaystyle \frac{1}{a_3}+・・・+\displaystyle \frac{1}{a_n}$を求めよ。

(3)
$\displaystyle \frac{1}{S_1}+\displaystyle \frac{1}{S_2}+\displaystyle \frac{1}{S_3}+・・・+\displaystyle \frac{1}{S_n}$を求めよ。
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#数B#滋賀大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
数列$2,6,12,20,30,42,・・・$について、$n$を自然数として以下の問いに答えよ。
(1)
第$n$項$a_n$と、初項から第$n$項までの和$S_n$を求めよ。

(2)
$\displaystyle \frac{1}{a_1}+\displaystyle \frac{1}{a_2}+\displaystyle \frac{1}{a_3}+・・・+\displaystyle \frac{1}{a_n}$を求めよ。

(3)
$\displaystyle \frac{1}{S_1}+\displaystyle \frac{1}{S_2}+\displaystyle \frac{1}{S_3}+・・・+\displaystyle \frac{1}{S_n}$を求めよ。
投稿日:2021.05.27

<関連動画>

一橋大 確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
サイコロを$n$回投げ、$k$回目の目を$a_k$。
$S_n=\displaystyle \sum_{k=1}^n 10^{n-k}a_k$

次の確率を求めよ。
$S_n$が
(1)4の倍数
(2)6の倍数
(3)7の倍数

出典:2013年一橋大学 過去問
この動画を見る 

九州大 Σの公式証明 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
2010九州大学過去問題
以下の問いに答えよ。証明
(1)和$1+2+3+\cdots+n$をnの多項式で表せ
(2)和$1^2+2^2+3^2+\cdots+n^2$をnの多項式で表せ
(3)和$1^3+2^3+3^3+\cdots+n^3$をnの多項式で表せ
この動画を見る 

福田のおもしろ数学142〜チェビシェフの多項式に関する証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#三角関数#恒等式・等式・不等式の証明#加法定理とその応用#数列#数学的帰納法#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$n$を正の整数とする。$\cos n\theta$は$\cos\theta$の$n$次式で表されることを証明してください。
この動画を見る 

数学「大学入試良問集」【13−11 ガウス記号とその戦略】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#三重大学#数B
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
実数$x$に対し、$[x]$を$x$以下の最大の整数とする。
たとえば、$[2]=2,\left[ \dfrac{ 7 }{ 5 } \right]=1$である。
数列$\{a_n\}$を$a_k=\left[ \dfrac{ 3k }{ 5 } \right](k=1,2,・・・)$と定めるとき、以下の問いに答えよ。
(1)$a_1,a_2,a_3,a_4,a_5$を求めよ。
(2)$a_{k+5}=a_k+3(k=1,2,・・・)$を示せ。
(3)自然数$n$に対して、$\displaystyle \sum_{k=1}^{5n} a_k$を求めよ。
この動画を見る 

ヨビノリたくみ 東大入試問題解説

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_{n}=\displaystyle \frac{{}_{ 2n+1 } C_n}{n!}$n自然数

(1)
$n \geqq 2,\displaystyle \frac{a_{n}}{a_{n-1}}$を既約分数$\displaystyle \frac{q_{n}}{p_{n}}$と表す。$(p_{n} \geqq 1)$
$p_{n},q_{n}$を求めよ

(2)
$a_{n}$が整数となる$n(n \geqq 1)$を全て求めよ

出典:2018年東京大学 入試問題
この動画を見る 
PAGE TOP