福田の入試問題解説〜北海道大学2022年文系第1問〜剰余定理と高次不等式の解 - 質問解決D.B.(データベース)

福田の入試問題解説〜北海道大学2022年文系第1問〜剰余定理と高次不等式の解

問題文全文(内容文):
kを実数の定数とし、
$f(x)=x^3-(2k-1)x^2+(k^2-k+1)x-k+1$
とする。
(1)$f(k-1)$の値を求めよ。
(2)$|k|\lt 2$のとき、不等式$f(x) \geqq 0$を解け。

2022北海道大学文系過去問
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 福田次郎
問題文全文(内容文):
kを実数の定数とし、
$f(x)=x^3-(2k-1)x^2+(k^2-k+1)x-k+1$
とする。
(1)$f(k-1)$の値を求めよ。
(2)$|k|\lt 2$のとき、不等式$f(x) \geqq 0$を解け。

2022北海道大学文系過去問
投稿日:2022.03.28

<関連動画>

複素関数論⑪ 三角形の周の複素積分 高専数学*3(3)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
複素関数論⑪ 三角形の周の複素積分を解説していきます.
この動画を見る 

複素関数論③(複素数で表される図形) *16(1),(2) 高専数学

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$w=\dfrac{1}{Z-i}$
$Z \in $が次の条件をみたすとき,$w$はどんな図形?

(1)$ \vert Z \vert =\sqrt3 $
(2)$ \vert Z \vert=1$
この動画を見る 

【数Ⅱ】複素数と方程式:3次方程式が異なる3つの解を持つ条件:方程式x³+(a-1)x-a=0が異なる3つの実数解をもつとき、定数aの値の範囲を求めよ。

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
教材: #ニュースコープ#ニュースコープ数学Ⅱ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
方程式$x^3+(a-1)x-a=0$が異なる3つの実数解をもつとき、定数aの値の範囲を求めよ。
この動画を見る 

愛が1番!

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
虚数iに関して解説していきます。
この動画を見る 

式の値

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^4+x^3+x^2+x+1=0$を満たすとき,
$(x^{2019}+x^{2018}+x^{2017}+1)^{5n}+$
$(x^{2019}+x^{2018}+x^{2016}+1)^{5n-5}$の値を求めよ.
この動画を見る 
PAGE TOP