ガウス記号 B 2021 明治学院【改】 - 質問解決D.B.(データベース)

ガウス記号 B 2021 明治学院【改】

問題文全文(内容文):
実数aに対してaを超えない最大の整数を[a]で表す。
[$\sqrt n$]=2となる整数nはいくつ?

2021明治学院高等学校
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
実数aに対してaを超えない最大の整数を[a]で表す。
[$\sqrt n$]=2となる整数nはいくつ?

2021明治学院高等学校
投稿日:2021.02.10

<関連動画>

ピタゴラス数、三平方の定理、整数解の求め方、質問への返答

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
ピタゴラス数,三平方の定理,整数解の求め方,質問への回答に関して解説していきます.
この動画を見る 

素因数分解せよ!prime factorization

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$これを素因数分解せよ.
160401$
この動画を見る 

自作問題・良問(自画自賛)

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
nは自然数
$4^{7n-3}+5^{2n+3}$
は必ずある素数をもつ
ある素数を求めよ

$4^{n+1}+5^{2n-1}$
は21の倍数であることを証明しなさい
この動画を見る 

「20+20=200」になる理由を解説

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#数と式#複素数と方程式#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#複素数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
「20+20=200」になる理由を解説しています。
この動画を見る 

信州大学 整数問題 Japanese university entrance exam questions

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
信州大学過去問題
$4^{2n-1}+3^{n+1}$は13の倍数であることを示せ。(n自然数)
この動画を見る 
PAGE TOP