複素関数論① *10(1)-(3) 高専数学 - 質問解決D.B.(データベース)

複素関数論① *10(1)-(3) 高専数学

問題文全文(内容文):
$Z \in A \not \subset $
次の方程式を解け.

(1)$Z^6=1$
(2)$Z^4=-1$
(3)$Z^3=8i$

「$Z・r(\cos\theta+i\sin\theta)$
$r\geqq 0,0\leqq \theta \lt 2\pi」$
単元: #微分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$Z \in A \not \subset $
次の方程式を解け.

(1)$Z^6=1$
(2)$Z^4=-1$
(3)$Z^3=8i$

「$Z・r(\cos\theta+i\sin\theta)$
$r\geqq 0,0\leqq \theta \lt 2\pi」$
投稿日:2021.02.07

<関連動画>

練習問題33 数検1級1次 微分方程式

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\dfrac{dy}{dx}=(x+y)^2$
の一般解を求めよ.
この動画を見る 

岩手大 滋賀大 三次関数と直線 3次方程式整数解 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#岩手大学#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
岩手大学過去問題
$f(x)=x^3-3x-1$
$f(x)=3ax+15$の解の個数

滋賀大学過去問題
n自然数、P素数
$x^3+nx^2-(5-n)x+P=0$
の1つの解が自然数である。この方程式を解け
この動画を見る 

福田の数学〜東京大学2018年理系第1問〜関数の増減と極限の計算

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$f(x)=\dfrac{x}{\sin x}+\cos x (0 \lt x \lt \pi)$のぞうげんひょうを作り、$x→+0,x→\pi-0$のときの極限を調べよ。

2018東京大学理過去問
この動画を見る 

【数Ⅲ】【微分とその応用】色々な関数の微分2 ※問題文は概要欄

アイキャッチ画像
単元: #微分とその応用#色々な関数の導関数#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
対数微分法により次の関数を微分せよ。ただし、aは定数とする。

y= (x+1)²/((x+2)³(x+3)⁴)
以下、略

次の関数を微分せよ。ただし x>0 とする。
y= x^sinx
以下、略

lim_(k→0) (1+k)^(1/k)=e を用いて、次の極限を求めよ。
lim_(x→0) ((log(1+x)/x)
以下、略
この動画を見る 

大阪大 3次関数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3-3ax+a$
$0 \leqq x \leqq 1$において$f(x) \geqq 0$となるような$a$の範囲

出典:2006年大阪大学 過去問
この動画を見る 
PAGE TOP