福田の1.5倍速演習〜合格する重要問題038〜京都大学2017年度理系第3問〜三角関数と自然数解 - 質問解決D.B.(データベース)

福田の1.5倍速演習〜合格する重要問題038〜京都大学2017年度理系第3問〜三角関数と自然数解

問題文全文(内容文):
$p,q$を自然数,$\alpha,\beta$を
$\tan\alpha=\frac{1}{p}$,$\tan\beta=\frac{1}{q}$
を満たす実数とする。このとき、
$\tan(\alpha+2\beta)=2$
を満たすp,qの組(p,q)を全て求めよ。

2017京都大学理系過去問
単元: #数A#数Ⅱ#大学入試過去問(数学)#整数の性質#三角関数#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$p,q$を自然数,$\alpha,\beta$を
$\tan\alpha=\frac{1}{p}$,$\tan\beta=\frac{1}{q}$
を満たす実数とする。このとき、
$\tan(\alpha+2\beta)=2$
を満たすp,qの組(p,q)を全て求めよ。

2017京都大学理系過去問
投稿日:2022.12.23

<関連動画>

確率の求め方間違っていませんか?確率の前提の話 #shorts #確率 #数学

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
確率の求め方間違っていませんか?確率の前提の話を解説していきます.
この動画を見る 

福田の数学〜2023年共通テスト速報〜数学IIB第2問微分積分〜円錐に内接する円柱の体積の最大と桜の開花予想

アイキャッチ画像
単元: #数A#数Ⅱ#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#微分法と積分法#不定積分・定積分#面積、体積#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師: 福田次郎
問題文全文(内容文):
第2問
[1](1)kを正の定数とし、次の3次関数を考える。
$f(x)=x^2(k-x)$
y=f(x)のグラフとx軸との共有点の座標は(0, 0)と($\boxed{\boxed{\ \ ア\ \ }}$, 0)である。
f(x)の導関数f'(x)は
f'(x)=$\boxed{\ \ イウ\ \ }x^2+\boxed{\ \ エ\ \ }kx$
である。
x=$\boxed{\boxed{\ \ オ\ \ }}$のとき、f(x)は極小値$\boxed{\boxed{\ \ カ\ \ }}$をとる。
x=$\boxed{\boxed{\ \ キ\ \ }}$のとき、f(x)は極大値$\boxed{\boxed{\ \ ク\ \ }}$をとる。
また、0<x<kの範囲においてx=$\boxed{\boxed{\ \ キ\ \ }}$のときf(x)は最大となることがわかる。

$\boxed{\boxed{\ \ ア\ \ }}$, $\boxed{\boxed{\ \ オ\ \ }}$~$\boxed{\boxed{\ \ ク\ \ }}$ の解答群(同じものを繰り返し選んでもよい。)
⓪0 ①$\frac{1}{3}k$ ②$\frac{1}{2}k$ ③$\frac{2}{3}k$ 
④k ⑤$\frac{3}{2}k$ ⑥$-4k^2$ ⑦$\frac{1}{8}k^2$ 
⑧$\frac{2}{27}k^3$ ⑨$\frac{4}{27}k^3$ ⓐ$\frac{4}{9}k^3$ ⓑ$4k^3$

(2)後の図のように底面が半径9の円で高さが15の円錐に内接する円柱を考える。円柱の底面の半径と体積をそれぞれx, Vとする。Vをxの式で表すと
V=$\frac{\boxed{\ \ ケ\ \ }}{\boxed{\ \ コ\ \ }}\pi x^2(\boxed{\ \ サ\ \ }-x)$(0<x<9)
である。(1)の考察より、x=$\boxed{\ \ シ\ \ }$のときVは最大となることがわかる。Vの最大値は$\boxed{\ \ スセソ\ \ }\pi$である。

[2](1)定積分$\displaystyle\int_0^{30}(\frac{1}{5}x+3)dx$の値は$\boxed{\ \ タチツ\ \ }$である。
また、関数$\displaystyle\frac{1}{100}x^2-\frac{1}{6}x+5$の不定積分は
$\displaystyle\int(\frac{1}{100}x^2-\frac{1}{6}x+5)dx$=$\displaystyle\frac{1}{\boxed{\ \ テトナ\ \ }}x^3-\frac{1}{\boxed{\ \ ニヌ\ \ }}x^2+\boxed{\ \ ネ\ \ }x+C$である。ただし、Cは積分定数とする。
(2)ある地域では、毎年3月頃「ソメイヨシノ(桜の種類)の開花予想日」が話題になる。太郎さんと花子さんは、開花日時を予想する方法の一つに、2月に入ってからの気温を時間の関数とみて、その関数を積分した値をもとにする方法があることを知った。ソメイヨシノの開花日時を予想するために、二人は図1の6時間ごとの気温の折れ線グラフを見ながら、次のように考えることにした。(※図1は動画参照)
xの値の範囲を0以上の実数全体として、2月1日午前0時から24x時間経った時点をx日後とする。(例えば、10.3日後は2月11日午前7時12分を表す。)また、x日後の気温をy℃とする。このとき、yはxの関数であり、これをy=f(x)とおく。ただし、yは負にはならないものとする。
気温を表す関数f(x)を用いて二人はソメイヨシノの開花日時を次の設定で考えることにした。
設定:正の実数tに対して、f(x)を0からtまで積分した値をS(t)とする。すなわち、S(t)=$\displaystyle\int_0^tf(x)dx$とする。このS(t)が400に到達したとき、ソメイヨシノが開花する。
設定のもと、太郎さんは気温を表す関数y=f(x)のグラフを図2(※動画参照)のように直線とみなしてソメイヨシノの開花日時を考えることにした。
(i)太郎さんは
$f(x)=\displaystyle\frac{1}{5}x+3$ (x ≧0)
として考えた。このとき、ソメイヨシノの開花日時は2月に入ってから$\boxed{\boxed{\ \ ノ\ \ }}$となる。
$\boxed{\boxed{\ \ ノ\ \ }}$の解答群
⓪30日後 ①35日後 ②40日後 
③45日後 ④50日後 ⑤55日後 
⑥60日後 ⑦65日後
(ii)太郎さんと花子さんは、2月に入ってから30日後以降の気温について話をしている。
太郎:1次関数を用いてソメイヨシノの開花日時を求めてみたよ。
花子:気温の上がり方から考えて、2月に入ってから30日後以降の気温を表す関数が2次関数の場合も考えて見ようか。
花子さんは気温を表す関数f(x)を、0≦x≦30のときは太郎さんと同じように
f(x)=$\frac{1}{5}x+3$ ...①
とし、x≧30のときは
f(x)=$\frac{1}{100}x^2-\frac{1}{6}x+5$ ...②
として考えた。なお、x=30のとき①の右辺の値と②の右辺の値は一致する。花子さんの考えた式を用いて、ソメイヨシノの開花日時を考えよう。(1)より
$\displaystyle\int_0^{30}(\frac{1}{5}x+3)dx$=$\boxed{\ \ タチツ\ \ }$
であり
$\displaystyle\int_{30}^{40}(\frac{1}{100}x^2-\frac{1}{6}x+5)dx$=115
となることがわかる。
また、x ≧30の範囲においてf(x)は増加する。よって
$\displaystyle\int_{30}^{40}f(x)dx$ $\boxed{\boxed{\ \ ハ\ \ }}$ $\displaystyle\int_{40}^{50}f(x)dx$
であることがわかる。以上より、ソメイヨシノの開花日時は2月に入ってから$\boxed{\boxed{\ \ ヒ\ \ }}$となる。

2023共通テスト過去問
この動画を見る 

小学生も解ける!? 2通りで解説 角度

アイキャッチ画像
単元: #数A#図形の性質#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
立方体2つ$\angle ABC = ?$
*図は動画内参照
この動画を見る 

京大の整数問題!落としてはいけない問題です!【数学 入試問題】【京都大学】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
2以上の自然数$n$に対し、$n$と$n^2+2$がともに素数になるのは、$n=3$の場合に限ることを示せ。

京都大過去問
この動画を見る 

福田の数学〜複雑な条件付き確率に挑戦しよう〜慶應義塾大学2023年経済学部第3問〜条件付き確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
[ 3 ]袋の中に、 1 から 9 までの数字を重複なく 1 つずっ記入したカ ー ドが 9 枚入ている。この袋からカ ー ドを 1 枚引き、カ ー ドに記入された数字を記録してから袋に戻すことを試行という。この試行を 5 回繰り返し行う。また、以下の (a), (b) に従い、各回の試行後の点数を定める。ただし、 1 回目の試行前の点数は 0 点とする。
(a) 各回の試行後、その回の試行で記録した数字と同じ数字のカ ー ドをそれまでに引いていない場合は、その回の試行前の点数にその回の試行で記録した数字を加える。
(b) 各回の試行後、その回の試行で記録した数字と同じ数字のカ ー ドをそれまでに引いている場合は、その回の試行前の点数にその回の試行で記録した数字を加え、さらに 1000 点を加える。

(1)3回の試行後の点数は23点であった。それまでに引いた3枚のカードに記入された数字は、小さい順に$\fbox{ア},\fbox{イ},\fbox{ウ}$である。これら3つの数字の文さんは$\dfrac{\fbox{エオ}}{\fbox{カ}}$である。
(2)4 回の試行後の点数が 23 点となる確率は$\dfrac{\fbox{キ}}{\fbox{クケコ}}$である。
(3)2 回の試行後の点数が 8 点または 1008点となる確率は$\dfrac{\fbox{サ}}{\fbox{シス}}$である。
(4)2 回の試行後の点数が 8 点または 1008 点であるとき、 5 回の試行後の点数が 2023 点となる条件付き確率は$\dfrac{\fbox{セソ}}{\fbox{タチツテ}}$である。

2023慶應義塾大学経済学部過去問
この動画を見る 
PAGE TOP