問題文全文(内容文):
三角形$\mathrm{OAB}$において、$\mathrm{OA}=5,\mathrm{OB}=7,\mathrm{AB}=8$とする。また、$\mathrm{O}$を中心とする半径$r$の円$C$が直線$\mathrm{AB}$上の点$\mathrm{D}$で接している。さらに、$\mathrm{A}$から$C$へ引いた接線と$C$との接点を$\mathrm{E}$とする。ただし、$\mathrm{E}$は$\mathrm{D}$と異なる点とする。$\overrightarrow{\mathrm{OA}}=\vec{a}, \overrightarrow{\mathrm{OB}}=\vec{b}$とおくとき、次の問いに答えよ。
(1) 内積$\vec{a}\cdot \vec{b}$を求めよ。
(2) $\overrightarrow{\mathrm{OD}}$を$\overrightarrow{\mathrm{OD}}=(1-t)\vec{a}+t\vec{b}$と表すとき、定数$t$の値を求めよ。
(3)$r$の値を求めよ。
(4) $\mathrm{D}$から$\mathrm{OA}$へ下した垂線を$\mathrm{DH}$とする。$\overrightarrow{\mathrm{DH}}$を$\vec{a}$を用いて表せ。
(5) $\mathrm{OE}$を$\mathrm{OE}=p\vec{a}+q\vec{b}$と表すとき、定数$p,q$の値を求めよ。
三角形$\mathrm{OAB}$において、$\mathrm{OA}=5,\mathrm{OB}=7,\mathrm{AB}=8$とする。また、$\mathrm{O}$を中心とする半径$r$の円$C$が直線$\mathrm{AB}$上の点$\mathrm{D}$で接している。さらに、$\mathrm{A}$から$C$へ引いた接線と$C$との接点を$\mathrm{E}$とする。ただし、$\mathrm{E}$は$\mathrm{D}$と異なる点とする。$\overrightarrow{\mathrm{OA}}=\vec{a}, \overrightarrow{\mathrm{OB}}=\vec{b}$とおくとき、次の問いに答えよ。
(1) 内積$\vec{a}\cdot \vec{b}$を求めよ。
(2) $\overrightarrow{\mathrm{OD}}$を$\overrightarrow{\mathrm{OD}}=(1-t)\vec{a}+t\vec{b}$と表すとき、定数$t$の値を求めよ。
(3)$r$の値を求めよ。
(4) $\mathrm{D}$から$\mathrm{OA}$へ下した垂線を$\mathrm{DH}$とする。$\overrightarrow{\mathrm{DH}}$を$\vec{a}$を用いて表せ。
(5) $\mathrm{OE}$を$\mathrm{OE}=p\vec{a}+q\vec{b}$と表すとき、定数$p,q$の値を求めよ。
単元:
#大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
三角形$\mathrm{OAB}$において、$\mathrm{OA}=5,\mathrm{OB}=7,\mathrm{AB}=8$とする。また、$\mathrm{O}$を中心とする半径$r$の円$C$が直線$\mathrm{AB}$上の点$\mathrm{D}$で接している。さらに、$\mathrm{A}$から$C$へ引いた接線と$C$との接点を$\mathrm{E}$とする。ただし、$\mathrm{E}$は$\mathrm{D}$と異なる点とする。$\overrightarrow{\mathrm{OA}}=\vec{a}, \overrightarrow{\mathrm{OB}}=\vec{b}$とおくとき、次の問いに答えよ。
(1) 内積$\vec{a}\cdot \vec{b}$を求めよ。
(2) $\overrightarrow{\mathrm{OD}}$を$\overrightarrow{\mathrm{OD}}=(1-t)\vec{a}+t\vec{b}$と表すとき、定数$t$の値を求めよ。
(3)$r$の値を求めよ。
(4) $\mathrm{D}$から$\mathrm{OA}$へ下した垂線を$\mathrm{DH}$とする。$\overrightarrow{\mathrm{DH}}$を$\vec{a}$を用いて表せ。
(5) $\mathrm{OE}$を$\mathrm{OE}=p\vec{a}+q\vec{b}$と表すとき、定数$p,q$の値を求めよ。
三角形$\mathrm{OAB}$において、$\mathrm{OA}=5,\mathrm{OB}=7,\mathrm{AB}=8$とする。また、$\mathrm{O}$を中心とする半径$r$の円$C$が直線$\mathrm{AB}$上の点$\mathrm{D}$で接している。さらに、$\mathrm{A}$から$C$へ引いた接線と$C$との接点を$\mathrm{E}$とする。ただし、$\mathrm{E}$は$\mathrm{D}$と異なる点とする。$\overrightarrow{\mathrm{OA}}=\vec{a}, \overrightarrow{\mathrm{OB}}=\vec{b}$とおくとき、次の問いに答えよ。
(1) 内積$\vec{a}\cdot \vec{b}$を求めよ。
(2) $\overrightarrow{\mathrm{OD}}$を$\overrightarrow{\mathrm{OD}}=(1-t)\vec{a}+t\vec{b}$と表すとき、定数$t$の値を求めよ。
(3)$r$の値を求めよ。
(4) $\mathrm{D}$から$\mathrm{OA}$へ下した垂線を$\mathrm{DH}$とする。$\overrightarrow{\mathrm{DH}}$を$\vec{a}$を用いて表せ。
(5) $\mathrm{OE}$を$\mathrm{OE}=p\vec{a}+q\vec{b}$と表すとき、定数$p,q$の値を求めよ。
投稿日:2024.07.19





