問題文全文(内容文):
すべての正の実数$x,y$に対し,
$\sqrt{x}+\sqrt{y}\leqq k\sqrt{2x+y}$が成り立つような実数$k$の最小値を求めよ.
1995東大(文理共通)
すべての正の実数$x,y$に対し,
$\sqrt{x}+\sqrt{y}\leqq k\sqrt{2x+y}$が成り立つような実数$k$の最小値を求めよ.
1995東大(文理共通)
単元:
#数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
すべての正の実数$x,y$に対し,
$\sqrt{x}+\sqrt{y}\leqq k\sqrt{2x+y}$が成り立つような実数$k$の最小値を求めよ.
1995東大(文理共通)
すべての正の実数$x,y$に対し,
$\sqrt{x}+\sqrt{y}\leqq k\sqrt{2x+y}$が成り立つような実数$k$の最小値を求めよ.
1995東大(文理共通)
投稿日:2020.12.21