福田の数学〜東京理科大学2023年創域理工学部第2問〜直線の交点と関数の最大 - 質問解決D.B.(データベース)

福田の数学〜東京理科大学2023年創域理工学部第2問〜直線の交点と関数の最大

問題文全文(内容文):
$\Large\boxed{2}$ 座標平面上に点A(2,0)と点B(0,1)がある。正の実数$t$に対して、$x$軸上の点P(2+$t$, 0)と$y$軸上の点Q(0, 1+$\displaystyle\frac{1}{t}$)を考える。
(1)直線AQの方程式を、$t$を用いて表せ。
(2)直線BPの方程式を、$t$を用いて表せ。
直線AQと直線BPの交点をR($u$,$v$)とする。
(3)$u$と$v$を、$t$を用いて表せ。
(4)$t$>0の範囲で、$u$+$v$の値を最大にする$t$の値を求めよ。
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 座標平面上に点A(2,0)と点B(0,1)がある。正の実数$t$に対して、$x$軸上の点P(2+$t$, 0)と$y$軸上の点Q(0, 1+$\displaystyle\frac{1}{t}$)を考える。
(1)直線AQの方程式を、$t$を用いて表せ。
(2)直線BPの方程式を、$t$を用いて表せ。
直線AQと直線BPの交点をR($u$,$v$)とする。
(3)$u$と$v$を、$t$を用いて表せ。
(4)$t$>0の範囲で、$u$+$v$の値を最大にする$t$の値を求めよ。
投稿日:2023.10.11

<関連動画>

徳島大(医)放物線の法線

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#徳島大学#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$C:y=x^2$上の$P(t,t^2)(t\gt 0)$における法線と$C$との交点を$Q(\neq P)$とする.
$PQ$の最小値を求めよ.

2020徳島大(医)過去問
この動画を見る 

福田のわかった数学〜高校3年生理系064〜微分(9)定義に従った微分(1)

アイキャッチ画像
単元: #微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
定義に従って$f(x)=x^n$を微分せよ.($n$は自然数)
この動画を見る 

福田の数学〜上智大学2021年理工学部第2問(1)〜条件を満たす関数と命題の否定

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#微分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} (1)実数全体で定義され、実数の値をとる関数f(x)に対する次の条件\ p\ を考える。\\
p:「K以上の全ての実数xに対してf(x) \geqq 1」が成り立つような実数Kが存在する。\\
(\textrm{i})\ 次に挙げた関数(\textrm{a})~(\textrm{d})のそれぞれについて、pを満たすならばo、pを\\
満たさないならばxをマークせよ。\\
(\textrm{a})f(x)=xe^{-x}  (\textrm{b})f(x)=\frac{2x^2+1}{x^2+1} (\textrm{c})f(x)=x+\sin x (\textrm{d})f(x)=x\sin x\\
(\textrm{ii})次の条件がpの否定になるように、\boxed{\ \ あ\ \ }~\boxed{\ \ え\ \ }のそれぞれの選択肢から、\\
あてはまるものを選べ。\\
・「\boxed{\ \ あ\ \ }\ \boxed{\ \ い\ \ }実数に対して\boxed{\ \ う\ \ }」が\boxed{\ \ え\ \ }\\
\\
\boxed{\ \ あ\ \ }の選択肢:(\textrm{a})K以上の  (\textrm{b})K未満の  \\
\boxed{\ \ い\ \ }の選択肢:(\textrm{a})すべての  (\textrm{b})ある  \\
\boxed{\ \ う\ \ }の選択肢:(\textrm{a})f(x) \geqq 1  (\textrm{b})f(x) \lt 1  \\
\boxed{\ \ え\ \ }の選択肢:(\textrm{a})どんな実数Kについても成り立つ  \\(\textrm{b})成り立つような実数Kが存在する  \\
(\textrm{iii})関数f(x)に対して、g(x)=2f(x)で関数g(x)を定める。次に挙げた命題(\textrm{A})~(\textrm{D})\\
のそれぞれについて、正しければoを、正しくなければxを、マークせよ。\\
(\textrm{A})f(x)がpを満たすならば、g(x)もpを満たす。\\
(\textrm{B})g(x)がpを満たすならば、f(x)もpを満たす。\\
(\textrm{C})f(x)がpを満たさないならば、g(x)もpを満たさない。\\
(\textrm{D})f(x)がpを満たさないならば、g(x)もpを満たす。\\
\end{eqnarray}

2021上智大学理工学部過去問
この動画を見る 

福田の数学〜早稲田大学2023年商学部第1問(3)〜条件を満たす最小次数の関数を求める

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$
(3)$n$を正の整数とする。次の条件(i),(ii),(iii)を満たす$n$次関数$f(x)$のうち$n$が最小のものは、$f(x)$=$\boxed{\ \ ウ\ \ }$である。
(i) $f(1)$=2
(ii) $\displaystyle\int_{-1}^1(x+1)f(x)dx$=0
(iii) すべての正の整数$m$に対して、$\displaystyle\int_{-1}^1|x|^mf(x)dx$=0
この動画を見る 

大学入試問題#917「さすがに落とせん」

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#微分法#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\sqrt{ 1+x+x^2 }$
$x=1$における微分係数を定義に従って求めよ

出典:1965年京都大学
この動画を見る 
PAGE TOP