三角関数 数 三角関数の不等式2【NI・SHI・NOがていねいに解説】 - 質問解決D.B.(データベース)

三角関数 数 三角関数の不等式2【NI・SHI・NOがていねいに解説】

問題文全文(内容文):
$0\leqq θ\lt 2π$のとき,次の不等式を解け。
(1) $\sin (θ+\displaystyle \frac{π}{4})\leqq \displaystyle \frac{\sqrt{3}}{2}$

(2) $\tan (θ-\displaystyle \frac{π}{6})\gt 1$

(3) $\cos (θ-\displaystyle \frac{π}{3})\lt -\displaystyle \frac{\sqrt{3}}{2}$

(4) $\tan (θ+\displaystyle \frac{π}{6})\geqq -\sqrt{3}$
チャプター:

0:00 (1)解説開始!
6:06 (2)解説開始!
11:30 (3)解説開始!
14:10 (4)解説開始!

単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$0\leqq θ\lt 2π$のとき,次の不等式を解け。
(1) $\sin (θ+\displaystyle \frac{π}{4})\leqq \displaystyle \frac{\sqrt{3}}{2}$

(2) $\tan (θ-\displaystyle \frac{π}{6})\gt 1$

(3) $\cos (θ-\displaystyle \frac{π}{3})\lt -\displaystyle \frac{\sqrt{3}}{2}$

(4) $\tan (θ+\displaystyle \frac{π}{6})\geqq -\sqrt{3}$
投稿日:2024.05.21

<関連動画>

【数Ⅱ】三角関数:置換したときの解の個数を考える

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
教材: #チャート式#黄チャートⅡ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$0\leqq\theta\lt2\pi$のとき、$\sin^2\theta-\sin\theta=a$ この方程式の解の個数を実数aの値で場合分けして求めよ
この動画を見る 

3次関数 三角形の面積最大 お茶の水女子大

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#三角形の辺の比(内分・外分・二等分線)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)#お茶の水女子大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3-6x^2+8x$,3点$O,A(3,f(3))$,$P(t,f(t)),0\lt t\leqq 4,t\neq 3$である.
$\triangle OAP$の面積が最大となる$t$の値を求めよ.

1987お茶の水女子大過去問
この動画を見る 

福田の数学〜上智大学2023年TEAP利用型文系第1問〜三角関数の最大最小

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 関数
$y$=2($\sin^3x$+$\cos^3x$)+8$\sin x\cos x$+5 (0≦$x$<2$\pi$)
を考える。$\sin x$+$\cos x$=$t$ とおく。
(1)$y$を$t$の式で表すと
$y$=$\boxed{\ \ ア\ \ }t^3$+$\boxed{\ \ イ\ \ }t^2$+$\boxed{\ \ ウ\ \ }t$+$\boxed{\ \ エ\ \ }$
である。
(2)関数$y$は$t$=$\frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ カ\ \ }}$において最小値$\frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}$をとる。
(3)関数$y$は$x$=$\frac{\boxed{\ \ ケ\ \ }}{\boxed{\ \ コ\ \ }}\pi$において最大値$\boxed{\ \ サ\ \ }$+$\sqrt{\boxed{\ \ コ\ \ }}$をとる。
この動画を見る 

青山学院大 三角方程式の解の個数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)#青山学院大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\sin^2\theta-k\sin\theta+\displaystyle \frac{1}{4}=0$
$(0 \leqq \theta \lt \pi)$

解の個数を求めよ

出典:2009年青山学院大学 過去問
この動画を見る 

福田の数学〜明治大学2021年理工学部第1問(2)〜三角関数の最大最小

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#加法定理とその応用#数学(高校生)#大学入試解答速報#数学#明治大学
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (2)\ 座標平面上に2点A(\frac{5}{8},0),\ B(0,\frac{3}{2})をとる。Lは原点を通る直線で、Lが\\
x軸の正の方向となす角\thetaは0 \leqq \theta \leqq \frac{\pi}{2}の範囲にあるとする。ただし、角\thetaの\\
符号は時計の針の回転と逆の向きを正の方向とする。点Aと直線Lとの距離を\\
d_A、点Bと直線Lの距離をd_Bとおく。このとき、\\
\\
d_A+d_B=\frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }}\sin\theta+\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}\cos\theta\\
\\
である。\thetaが0 \leqq \theta \leqq \frac{\pi}{2}の範囲を動くとき、d_A+d_Bの最大値は\frac{\boxed{\ \ シス\ \ }}{\boxed{\ \ セ\ \ }}であり、\\
\\
最小値は\frac{\boxed{\ \ ソ\ \ }}{\boxed{\ \ タ\ \ }}である。
\end{eqnarray}

2021明治大学理工学部過去問
この動画を見る 
PAGE TOP