【高校数学】 数B-86 群数列④ - 質問解決D.B.(データベース)

【高校数学】 数B-86 群数列④

問題文全文(内容文):
数列$\dfrac{1}{1},\dfrac{1}{2},\dfrac{2}{1},\dfrac{1}{3},\dfrac{2}{2},\dfrac{3}{1},\dfrac{1}{4},\dfrac{2}{3},\dfrac{3}{2},\dfrac{4}{1},\dfrac{1}{5},\dfrac{2}{4},・・・$
について次の問いに答えよう.

①$\dfrac{5}{22}$は第何項か求めよう.

②この数列の第100項を求めよう.
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数列$\dfrac{1}{1},\dfrac{1}{2},\dfrac{2}{1},\dfrac{1}{3},\dfrac{2}{2},\dfrac{3}{1},\dfrac{1}{4},\dfrac{2}{3},\dfrac{3}{2},\dfrac{4}{1},\dfrac{1}{5},\dfrac{2}{4},・・・$
について次の問いに答えよう.

①$\dfrac{5}{22}$は第何項か求めよう.

②この数列の第100項を求めよう.
投稿日:2016.02.22

<関連動画>

香川大(医) 漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#香川大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^2-4x+1=0$の2つの解を$\alpha,\beta(\alpha \gt \beta)$とする

(1)
$\alpha^n + \beta^n$は偶数であることを示せ($n$自然数)

(2)
$[ \alpha^n ]$は奇数であることを示せ
$[ \alpha^n ]$は$\alpha^n$をこえない最大の整数

出典:2018年香川大学 医学部 過去問
この動画を見る 

鹿児島大 漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#鹿児島大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=1$ 一般項を求めよ
$a_{n+1}=2a_n+3n^2+3n$

出典:2019年鹿児島大学 過去問
この動画を見る 

差がつく問題!記号が多くても焦らずに解けば大丈夫!【お茶の水女子大学】【数学 入試問題】

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#数B
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$m$を2以上の自然数,$n$を自然数とするとき,次の不等式

${}_{mn} \mathrm {C}_n≧m^n>\displaystyle \sum_{i=0}^{n-1} m^i$

が成り立つことを示せ。

お茶の水女子大過去問
この動画を見る 

東工大 三項間漸化式

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$は自然数である.
$x^2-3x+5=0$の2つの解を$\alpha,\beta$とする.
$\alpha^n+\beta^n-3^n$は5の倍数であることを示せ.

2013東工大過去問
この動画を見る 

福田の数学〜東京医科歯科大学2023年医学部第2問PART2〜場合分けされた連立漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数B#数Ⅲ#東京医科歯科大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ xyz空間において、3点(0,0,0),(1,0,0),(0,1,0)を通る平面$\pi_1$と3点(1,0,0),(0,1,0),(0,0,1)を通る平面$\pi_2$を考える。$x_0$=1, $y_0$=2, $z_0$=-2として、点P${}_0$($x_0$,$y_0$,$z_0$)から始めて、次の手順でP${}_1$($x_1$,$y_1$,$z_1$), P${}_2$($x_2$,$y_2$,$z_2$),... を決める。
・$k$が偶数のとき、$\pi_1$上の点で点P${}_k$($x_k$,$y_k$,$z_k$)からの距離が最小となるものをP${}_{k+1}$($x_{k+1}$,$y_{k+1}$,$z_{k+1}$)とする。
・$k$が奇数のとき、$\pi_2$上の点で点P${}_k$($x_k$,$y_k$,$z_k$)からの距離が最小となるものをP${}_{k+1}$($x_{k+1}$,$y_{k+1}$,$z_{k+1}$)とする。
このとき、次の問いに答えよ。
(1)$\pi_2$に直交するベクトルのうち、長さが1で$x$成分が正のもの$n_2$を求めよ。
(2)$x_{k+1}$,$y_{k+1}$,$z_{k+1}$をそれぞれ$x_k$,$y_k$,$z_k$を用いて表せ。
(3)$\displaystyle\lim_{k\to\infty}x_k$, $\displaystyle\lim_{k\to\infty}y_k$, $\displaystyle\lim_{k\to\infty}z_k$を求めよ。
この動画を見る 
PAGE TOP