福田の数学〜立教大学2022年経済学部第1問(2)〜絶対の付いた方程式の解 - 質問解決D.B.(データベース)

福田の数学〜立教大学2022年経済学部第1問(2)〜絶対の付いた方程式の解

問題文全文(内容文):
$|X-|X-2||=1$の解をすべて求めよ

2022立教大学経済学部過去問
単元: #数Ⅰ#大学入試過去問(数学)#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$|X-|X-2||=1$の解をすべて求めよ

2022立教大学経済学部過去問
投稿日:2022.09.19

<関連動画>

福田の数学〜慶應義塾大学2021年環境情報学部第1問〜三角形の内部にある外接している5つの円

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#図形の性質#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#方べきの定理と2つの円の関係#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} 図(※動画参照)のように三角形ABCの内部に半径1の円が5つ含まれている。4つの円は\\
辺BCに接しながら横一列に互いに接しながら並び、左端の円は辺ABに接し、右端の円は\\
辺ACに接している。また、もう一つの円は、辺ABと辺ACに接し、4つの円の右側の2つ\\
の円に接している。このとき\\
AB=\frac{\sqrt{\boxed{\ \ アイ\ \ }}}{\boxed{\ \ ウエ\ \ }}BC   AC=\frac{\boxed{\ \ オカ\ \ }}{\boxed{\ \ キク\ \ }}BC\\
BC=\frac{\boxed{\ \ ケコ\ \ }+\boxed{\ \ サシ\ \ }\sqrt{\boxed{\ \ スセ\ \ }}+\boxed{\ \ ソタ\ \ }\sqrt{\boxed{\ \ チツ\ \ }}}{\boxed{\ \ テト\ \ }}   (\boxed{\ \ スセ\ \ } \lt \boxed{\ \ チツ\ \ })\\
である。
\end{eqnarray}

2021慶應義塾大学環境情報学部過去問
この動画を見る 

【差がつく】余弦定理の証明、できますか?【高校・数学】

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
余弦定理の証明解説動画です
この動画を見る 

平方根の計算練習に、

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$a \sqrt b$の形に直す
$\sqrt {27} = $
$\sqrt {45} = $
$\sqrt {54} = $
$\sqrt {63} = $
$\sqrt {90} = $
この動画を見る 

横浜市立大(医)3次方程式の虚数解の絶対値

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#複素数と方程式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#一次不等式(不等式・絶対値のある方程式・不等式)#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^3-x^2-x+k=0(k\gt 1)$である.

(1)実数解は1個であることを示せ.
(2)3つの解の絶対値はいずれも1より大きいことを示せ.

横浜市立(医)過去問
この動画を見る 

「二次関数の最大最小 場合分け③】【高校数学ⅠA】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
2次関数$f(x)=x^2-2ax+4(1 \leqq x \leqq 3)$について
(1)$f(x)$の最小値$m(a)$を求めよ。
(2)$f(x)$の最大値$M(a)$を求めよ。
(3)$y=m(a)$のグラフをかけ。
(4)$y=M(a)$のグラフをかけ。


$a \gt 0$とする。
2次関数$f(x)=x^2-4x+3(0 \leqq x \leqq 1)$について
(1)$f(x)$の最小値$m(a)$を求めよ。
(2)$f(x)$の最小値$M(a)$を求めよ。
(3)$k=m(a)$のグラフをかけ。
(4)$K=M(a)$のグラフをかけ。


2次関数$f(x)=x^2-4x+3(a \leqq x \leqq a+2)$について
(1)$f(x)$の最小値$m(a)$を求めよ。
(2)$f(x)$の最小値$M(a)$を求めよ。
(3)$t=m(a)$のグラフをかけ。
(4)$T=M(a)$のグラフをかけ。
この動画を見る 
PAGE TOP