大学入試問題#464「誘導の力は偉大」 神戸大学(2000) #不定積分 #積分の応用 - 質問解決D.B.(データベース)

大学入試問題#464「誘導の力は偉大」 神戸大学(2000) #不定積分 #積分の応用

問題文全文(内容文):
$f(x)=\displaystyle \frac{1}{x^3(1-x)}$
(1)
$f(x)=\displaystyle \frac{a_1}{x}+\displaystyle \frac{a_2}{x^2}+\displaystyle \frac{a_3}{x^3}+\displaystyle \frac{b}{1-x}$
とおくとき、定数$a_1,a_2,a_3,b$を求めよ

(2)
$\displaystyle \int f(x) dx$

(3)
$\displaystyle \int \displaystyle \frac{dx}{x^P(1-x)}(P=1,2,3,・・・)$

出典:2000年神戸大学 入試問題
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$f(x)=\displaystyle \frac{1}{x^3(1-x)}$
(1)
$f(x)=\displaystyle \frac{a_1}{x}+\displaystyle \frac{a_2}{x^2}+\displaystyle \frac{a_3}{x^3}+\displaystyle \frac{b}{1-x}$
とおくとき、定数$a_1,a_2,a_3,b$を求めよ

(2)
$\displaystyle \int f(x) dx$

(3)
$\displaystyle \int \displaystyle \frac{dx}{x^P(1-x)}(P=1,2,3,・・・)$

出典:2000年神戸大学 入試問題
投稿日:2023.02.28

<関連動画>

#信州大学 #不定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{1}{x\sqrt{ x+1 }} dx$

出典:信州大学
この動画を見る 

福田のおもしろ数学234〜区分求積の公式の変形その2

アイキャッチ画像
単元: #積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \frac{1}{n} \sum_{k=1}^{n} f(\frac{k}{n}) $$ = \displaystyle \int_0^1 f(x) dx $ である。では、$\displaystyle \lim_{ n \to \infty } \frac{1}{n+1} \sum_{k=n+2}^{4n+1} f(\frac{k}{n})$ は?
この動画を見る 

大学入試問題#435「基本的な性質が盛り沢山の良問!!」 信州大学(2014) #不定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{3\sin\theta-\sin3\theta}{1+\cos\theta}d\theta$

出典:2014年信州大学理学部後期 入試問題
この動画を見る 

【数Ⅲ-146】積分特訓①

アイキャッチ画像
単元: #積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
④$\int \frac{2x+3}{\sqrt{x^2+3x-4}} dx$

⑤$\int x^2\log xdx$

⑥$\int\sin^2\frac{x}{2}dx$
この動画を見る 

福田のおもしろ数学549〜無理関数の不定積分その2

アイキャッチ画像
単元: #関数と極限#積分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#不定積分#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

不定積分

$I=\displaystyle \int \sqrt{x^2-1}dx \ (x\gt 1)$を

$x=\sqrt{x^2-1}=t$

と置き換えて求めて下さい。
    
この動画を見る 
PAGE TOP